Antoine
|
![]() |
Maître de Conférences (HdR) à Sorbonne Université | |
Laboratoire de Probabilités, Statistique et Modélisation (LPSM) UFR de Mathématiques 4 Place Jussieu -- Tour 15-25 -- Bureau 222 75005 Paris |
|
Mail: antoine"dot"godichon_baggioni"at"upmc"dot"fr |
Accueil | Enseignements | Recherche | Etudiants |
Curriculum vitae | ![]() ![]() |
Thèmes de recherche:
Statistique Robuste, Algorithmes
stochastiques, Descentes de gradient, Médiane géométrique, Classification
Brazey, D., Godichon-Baggioni, A. and Portier, B.: A mixture of ellipsoidal densities for 3D data modelling, Hal Godichon-Baggioni, A. and Lu, W.: Online stochastic Newton methods for estimating the geometric median and applications, Hal Godichon-Baggioni, A. and Tarrago, P.: Non asymptotic analysis of Adaptive stochastic gradient algorithms and applications, Hal
[17] Godichon-Baggioni and Robin, S. (2023): A robust model-based clustering based on the geometric median and the Median Covariation Matrix, à paraitre dans Statistics and Computing, Hal, Package R RGMM [16] Godichon-Baggioni, A., Lu, W. and Portier, B. (2023): Recursive ridge regression using second-order stochastic algorithms, à paraître dans Computational Statistics and Data Analysis, Hal [15] Godichon-Baggioni, A., Werge, N. and Wintenberger, O. (2023): Learning from time-dependent streaming data with online stochastic algorithms, Transactions on Machine Leaning Research, Journal, Hal [14] Cénac, P., Godichon-Baggioni, A. and Portier, B. (2023): An efficient Averaged Stochastic Gauss-Newtwon algorithm for estimating parameters of non linear regressions models, à paraître dans Bernoulli, Arxiv [13] Godichon-Baggioni, A. (2023):
Convergence in quadratic mean of averaged stochastic gradient
algorithms without strong convexity nor bounded gradient, à paraître
dans Statistics, Hal [12] Godichon-Baggioni, A., Werge, N. and Wintenberger, O. (2023): Non Asymptotic Analysis of Stochastic Approximation Algorithms for Streaming Data, ESAIM PS, Hal, Journal [11] Boyer, C. and Godichon-Baggioni, A. (2022): On the asymptotic rate of convergence of Stochastic Newton algorithms and their Weighted Averaged versions, Computational Optimization and Applications Hal, Codes, Journal [10] Godichon-Baggioni, A. and Saadane, S. (2020): On the rates of convergence of Parallelized Averaged Stochastic Gradient Algorithms, Statistics, Arxiv, Journal [9] Bercu, B., Godichon-Baggioni, A., Portier, B. (2020): An efficient stochastic Newton algorithm for parameter estimation in logistic regressions, SIAM, Journal on Control and Optimization, Arxiv, Journal [8] Godichon-Baggioni, A., Maugis-Rabusseau, C., Rau, A. (2020): Multi-view cluster agregation and splitting with an application to multi-omic breast cancer data, Annals of Applied Statistics, HAL, Journal, Package R maskmeans
[7] Godichon-Baggioni, A. (2019): Lp and almost sure rates of convergence of averaged stochastic gradient algorithms: locally strongly convex objective, ESAIM PS, Arxiv, Journal, Erratum [6] Godichon-Baggioni, A. (2019): Online estimation of the asymptotic variance for averaged stochastic gradient algorithms, Journal of Statistical Planning and Inference, Arxiv, Journal [5] Godichon-Baggioni, A., Maugis-Rabusseau, C. and Rau, A. (2018): Clustering transformed compositional data using K-means, with applications in gene expression and bicyle sharing system data, Journal of Applied Statistics, Arxiv, Journal, Package R coseq
Contributions à des packages R: RGMM, disposnible sur le CRAN, avec S. Robin Maskmeans, disponible sur Github, avec C. Maugis-Rabusseau et A. Rau coseq, disponible sur Bioconductor, avec C. Maugis-Rabusseau et A. Rau
Habilitation à Diriger des Recherches, soutenue le 14 mars 2023: Online stochastic algorithms and applications, PDF Thèse soutenue le 17 Juin 2016: Algorithmes stochastiques pour la statistique robuste en grande dimension, sous la direction de Hervé Cardot et Peggy Cénac, PDF |