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Introduction

This manuscript is based on most of my research on online stochastic optimization and its appli-
cations to robust statistics. It is composed of five chapters that are described quickly there.

Chapter 1: Stochastic Gradient algorithms

A usual stochastic optimization problem, encountered for estimating the parameters of logistic
regression [Bac14, CNS17], the geometric median and quantiles [CCZ13, GB16a, CCGB15], or
superquantiles [CG20, BCG20] for instance, is to estimate the minimizer of a convex function
G : H −→ R of the form

G(h) = E [g(X, h)]

where X is a random variable and H is a separable Hilbert space. A regular method is to ap-
proximate the minimizer of the empirical function generated by a sample with the help of de-
terministic optimization methods. Nevertheless, it often necessitates high computational costs
if we deal with large samples taking values in high dimensional spaces. Then, stasticians have
studied more and more mini-batch alternatives [AHA+20, KLRT15]. In any case, this kind of
method necessitates to store all the data into memory and do not enable to easily update the es-
timates if the data arrive sequentially or in a streaming set. In order to overcome this, we focus
in this chapter on online stochastic gradient algorithms that have been introduced by [RM51].
These algorithms have become hegemonic by a low computational cost per iteration, they allow
performing machine learning tasks on large datasets, processing each observation only once (see
[BCN18, Pel98, BM13, GLQ+19, Bac14, GP17, NJLS09, JN+14, NND+18]). In Chapter 1, we will
focus on the obtaining of theoretical guarantees such that almost sure and L2 rates of convergence
under weak assumptions in possibly infinite dimensional spaces. All the theoretical results are
illustrated on three applications: the estimation of the parameter of linear and logistic regressions
as well as the estimation of p-means.

Chapter 2: Averaged Stochastic Gradient algorithms

Most of the time, it is almost impossible for stochastic gradient estimates to achieve the usual rate
of convergence in quadratic mean 1

n (where n is the sample size). Worse, the estimates are not
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asymptotically efficient. Anyway, a usual way to accelerate the convergence of gradient estimates
has been introduce by [Rup88] and [PJ92]. This consists in considering the averaged stochastic
gradient algorithm, i.e it consists in taking the averaging of all the estimates obtained with the help
of the stochastic gradient algorithm. Remark that here again, these estimates have been deeply
studied these last decades (see [Pel00, BM13, Bac14, GP17] for instance). In Chapter 2, we go on
the theoretical study of online estimates in possibly infinite dimensional spaces and give a weak
framework for each the averaged estimates are asymptotically efficient and for each we are able to
uniformly bound the quadratic mean errors of the estimates. Here again, all the theoretical results
are illustrated through three applications: linear and logistic regressions as well as the estimation
of p-means.

Chapter 3: Online Stochastic Newton algorithms

The averaged stochastic gradient estimates are known to be asymptotically efficient [PJ92, Pel00,
GB17] and to achieve, under mild assumptions, the Cramer-Rao bound (up to rest terms) [GP17,
BM13]. However, these first-order online algorithms can be shown, in practice, to be very sensitive
to the Hessian structure of the risk they are supposed to minimize [BGBP19, LP20, BGB20]. To ad-
dress this issue, (quasi) online second-order optimization has been also considered in the literature
(see [DHS11, Zei12, BHNS16, LP20] for instance). In Chapter 3, we consider a unified and general
framework that includes various applications of machine learning tasks, for which we propose a
stochastic Newton algorithm as well as a weighted averaged version. In addition, one the main
problem for online Newton methods is to propose online estimates of the inverse of the Hessian,
and we will see all along Chapter 3, through examples (linear logistic and softmax regressions),
how the estimates of the Hessian can be constructed and updated over iterations using genuine
second-order information.

Chapter 4: Stochastic Streaming Gradient algorithms

Although averaged stochastic gradient/Newton algorithms are known to be asymptotically ef-
ficient, the studied framework cannot be directly applied to the case where the data are not in-
dependent and/or identically distributed. In order to overcome this, we focus in Chapter 4 on
streaming methods. More precisely, we consider data arriving sequentially by (non independent)
blocs and introduce new Stochastic Streaming Gradient algorithms and their averaged version
[GBWW21, GBWW22]. We then give a framework where the data are not supposed to be in-
dependent nor identically distributed and prove that under conditions, the Averaged Stochastic
Streaming Gradient estimates achieve the Cramer-Rao bound.
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Chapter 5: Applications to robust statistics

The acquisition of massive data lying in high dimensional spaces is unfortunately often accom-
panied by a contamination of these last ones. In this context of contaminated data, even few
individuals may corrupt simple statistical indicators such as the mean or the variance. Detecting
these atypical data automatically is not straightforward and considering robust techniques is an
interesting alternative [Sma90, RL05, FM01, CFF07].

In Chapter 5, we first focus on the geometric median (also called L1-median or spatial median)
introduced by [Hal48]. Several iterative methods based on Weiszfeld algorithm [Wei37] have been
developped [VZ00]. Nevertheless, for all the reasons mentioned above, we focus on the online esti-
mates of the median obtained with the help of an averaged stochastic gradient algorithm [CCZ13].
We then give an example of application to unsupervised robust clustering. One of the most usual
method for hard clustering is probably the K-means algorithm [For65, Mac67], and one can refer to
[CAGM97, GEG99] for the robust version obtained with the help of Trimmed K-means. In Chapter
5, we focus on K-medians algorithms [Mac67, KR09, CCM12], and more precisely, we propose a
method for selecting the number of clusters based on a penalized criterion [Fis11] whose penalty
is calibrated with the help of a slope heuristic [BMM12, AM09].

Finally, we focus on the recursive estimation of the Median Covariation Matrix (MCM), which is
a new robust dispersion indicator [KP12, CGB15], and its applications to online robust Principal
Components analysis (PCA) and robust mixture models. PCA is one of the most useful statistical
tool to extract information by reducing the dimension when one has to analyze large samples of
multivariate data [Jol02, RS05, Ver06, HPV14]. Nevertheless, principal components, which are
derived from the spectral analysis of the covariance matrix, can be very sensitive to outliers and
many robust procedures for principal components analysis have been considered in the literature
(see [HRVA08, HR09, Ger08] among others). We focus here on a new approach based on the MCM,
which has, under conditions [KP12], the same eigenvectors as the usual covariance matrix. Finally,
in the case where the law of the sample is known, one can rebuild robustly the covariance matrix
from the estimates of the MCM [GBR22], and this approach is so applied to the development of
robust methods for model based clustering. This represents an interesting alternative to usual
robust methods which often necessitates to modelize the contamination (see [BR93, CH16, CH17,
FP20] for instance).
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Chapter 1

Stochastic Gradient algorithms

This chapter is based on [GB16b, GB17, GB21].
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1.1 Introduction

A usual stochastic optimization problem is to estimate the minimizer of a convex function G :
H −→ R of the form

G(h) = E [g(X, h)] (1.1)

where X is a random variable. This problem is encountered, for instance, for estimating the param-
eters of logistic regression [Bac14, CNS17], the geometric median and quantiles [CCZ13, GB16a,
CCGB15], or superquantiles [CG20, BCG20]. Nevertheless, since most of the time it is not possi-
ble to calculate explicitly the gradient or the Hessian of G, one cannot apply usual optimization
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methods such that gradient or Newton algorithms amoung others [BV04, DGN14, N+18, NNG19].
Then, a solution is to consider a sample X1, . . . , Xn and consider the empirical function

Gn(h) =
1
n

n

∑
k=1

g (Xk, h)

as well as its minimizer that we will denote m̂n. Even if in some cases, such that linear regression
or the estimation of the mean, we can explicitly calculate m̂n, it is not possible in most of cases.
Then, a solution is to approximate m̂n with the help of usual optimization methods. Nevertheless,
it often necessitates high computational costs if we deal with large samples taking values in high
dimensional spaces. One solution to reduce the calculation time is to consider iterative mini-batch
gradient algorithms of the form

mt+1 = mt − γt ∑
i∈St

∇hg (Xi, mt)

where St ⊂ {1, . . . , n} is the mini-batch considered at time t [AHA+20, KLRT15]. Nevertheless,
this kind of methods necessitates to store all the data into memory and do not enable to easily
update the estimates if the data arrive sequentially or in a streaming set. In order to overcome this,
we focus in this chapter on the online stochastic gradient algorithms.

Stochastic gradient algorithms have been introduced by [RM51] and are more and more studied
nowadays. It is hardly ever possible to cite all the recent results, but we focus particularly on the
almost sure rates of convergence obtained by [Pel98] in the case whereH = Rd. Always in a finite
dimensional set, non asymptotic rate of convergence of stochastic gradient estimates were given
in the strongly convex case [BM13, GLQ+19]. Nevertheless, the loss of strong convexity leads the
results to be harder to obtain. In recent work, [Bac14] and [GP17] succeeded in obtaining the rate
of convergence in quadratic mean of the estimates without supposing G to be strongly convex,
but supposing that the gradient of g admits exponential moments or is bounded. Remark that we
will often refer to the aforementioned papers for non asymptotic rates of convergence, but several
other results exist in the literature [NJLS09, JN+14, BCN18, NND+18].

Observe that we decide here to focus on the original stochastic gradient algorithm but it is no
less important to mention that several improvements of these estimates have been introduced
[BCN18, Rud16]. For instance, momentum methods have been introduced to give more weights for
coordinates whose gradients point in the same direction, and so reduce oscillations [Qia99, LR20].
In addition, the Nesterov acceleration method is a modification of the momentum method which
allows to take into account an anticipation of the next step of the algorithm [MJ19, EBB+21]. Finally,
several methods have been developed to try to adapt the stepsequences to the different corrdinates
[DHS11, Zei12, LP20, LVLLJ21, KB14].

In this chapter, we first ensure that all the asymptotic results (almost sure rates of convergence
and convergence in law) given by [Pel98] remain true even if H is not of finite dimension. In
a second time, we will focus on the obtaining of explicit upper bounds of the quadratic mean
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error of stochastic gradient estimates, and so, under weak assumptions, i.e without supposing that
G is strongly convex nor supposing that the gradient of g is uniformly bounded. Finally, quick
results on the Lp rates of convergence will be given. All the theoretical results are illustrated on
three applications: the estimation of the parameter of linear and logistic regressions as well as the
estimation of p-means.

1.2 Definition and framework

In what follows, we consider a separable Hilbert spaceH (not necessarily of finite dimension) and
we denote by ‖.‖ the euclidean norm and by 〈., .〉 the associated inner product. Let us recall that
the aim of this chapter is to estimate m, where m is the minimizer of the function G : H −→ R

defined for all h ∈ H by
G(h) = E [g(X, h)]

with g : X × H −→ R, where X is a random variable lying in a measurable space X . In the
sequel, we suppose that for almost every x ∈ X , the functional g(x, .) is differentiable. Further-
more, we consider i.i.d random variables X1, . . . , Xn, Xn+1, . . . with the same law as X and arriving
sequentially. The stochastic gradient algorithm is defined recursively for all n ≥ 0 by [RM51]

mn+1 = mn − γn+1∇hg (Xn+1, mn) (1.2)

where ∇hg (Xn+1, .) is the gradient of g with respect to the second variable, and γn is a positive
step sequence satisfying

∑
n≥0

γn+1 = +∞ and ∑
n≥0

γ2
n+1 < +∞.

Remark that it necessitates few operations to update the estimates. Furthermore, the algorithm
can also be written as

mn+1 = mn − γn+1∇G (mn) + γn+1ξn+1 (1.3)

where ξn+1 := ∇G (mn) − ∇hg (Xn+1, θn). Considering the filtration (Fn)n≥0 generated by the
sample, one has, since mn is Fn-measurable, that (ξn) is a sequence of martingale differences
adapted to (Fn), i.e E [ξn+1|Fn] = 0. Then, this online algorithm can be seen as a noisy gradi-
ent algorithm.

1.3 Almost sure rate of convergence

In all the following, we assume that G admits a minimizer m.
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1.3.1 Convergence results

We first recall a usual theorem [Duf97] giving the strong consistency of stochastic gradient esti-
mates under weak assumptions. In this aim, let us first introduce a new assumption:

(A1a) There are non-negative constants C1, C2 such that for all h ∈ H,

E
[
‖∇hg (X, h)‖2

]
≤ C1 + C2 ‖h−m‖2 .

This assumption is quite usual and just means that we have at worse a linear increasing of the
gradient of g (up to the expectation), and so, at worse a quadratic increasing of the functional G.
We can now give the strong consistency of stochastic gradient estimates.

Theorem 1.3.1. Suppose that Assumption (A1a) is fulfilled and that for all h ∈ H such that h 6= m,

〈∇G (h) , h−m〉 > 0.

Then
mn

a.s−−−−→
n→+∞

m.

Remark that the conditions on the step sequence are due to the use of Robbins-Siegmund Theo-
rem for obtaining the strong consistency of the estimates. Furthermore, for the sake of simplicity,
we have chosen a deterministic stepsequence, but previous theorem remains true taking a ran-
dom stepsequence. More precisely, previous theorem remains true if we chose a positive random
stepsequence (Γn)n≥1 verifying

∑
n≥0

Γn+1 = +∞ a.s and ∑
n≥0

Γ2
n+1 < +∞ a.s,

and such that for all n ≥ 0, Γn+1 is Fn-measurable. This possible choice is crucial to prove the
convergence of Stochastic Newton estimates in Chapter 3.

We now focus on the almost sure rates of convergence of the estimates obtained with the help of
stochastic gradient algorithm. In this aim, let us suppose from now that we have a stepsequence
(γn) satisfying γn = cγn−γ with cγ > 0 and γ ∈ (1/2, 1). Furthermore, we introduce the following
assumptions:

(A1η) There are positive constants η > 1
γ − 1 and Cη such that for all h ∈ H,

E
[
‖∇hg (X, h)‖2+2η

]
≤ Cη

(
1 + ‖h−m‖2+2η

)
(A2) The functional G is twice continuously differentiable on a neighborhood Vm of m and

lim inf
h∈Vm

λmin
(
∇2G(h)

)
> 0.
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Note that Assumption (A1η) is verified, for instance, since∇hg(X, .) admits a fourth order moment
while Assumption (A2) implies that the functional G is locally strongly convex and we will denote
λmin := λmin

(
∇2G(m)

)
. We can now give the almost sure rate of convergence of the estimates.

Theorem 1.3.2 ([GB16b]). Suppose Assumptions (A1η) and (A2) hold. Then

‖mn −m‖2 = O
(

ln n
nγ

)
a.s.

Remark that this result was already given by [Pel98] in the finite dimensional case.

Sketch of the proof. The first idea is to linearize the gradient in equality (1.3), i.e one has

mn+1 −m = (IH − γn+1H) (mn −m) + γn+1ξn+1 − γn+1δn (1.4)

where H := ∇2G(m) and δn := ∇G (θn) − H (mn −m) is the remainder term in the Taylor’s
expansion of the gradient. Since mn converges almost surely to m and thanks to Assumption (A2),
one has ‖δn‖ = o (‖mn −m‖) a.s. Furthermore, with the help of an induction, one has

mn −m = βn,0 (m0 −m) +
n−1

∑
k=0

βn,k+1γk+1ξk+1 −
n−1

∑
k=0

βn,k+1γk+1δk (1.5)

with βn,n = IH and βn,k = ∏n
j=k+1

(
IH − γjH

)
. With the help of some usual calculus, one can prove

that the first term on the right-hand side of equality (1.5) converges exponentially fast while the
third one converges at least at the same rate as the second one. Then one has to focus on this second
term, in each one can make appear a martingale term. The proof in [Pel98] consists in writing this
term in the basis ofH composed of eigenvectors of H and to apply the law of the iterated logarithm
to each coordinate. Nevertheless, this could not be applied in the infinite dimensional case and we
so propose a proof based on the obtaining of some exponential inequalities for "nearly" martingales
(see Lemma 6.1 in the arxiv version of [GB16b]).

1.3.2 Some applications

Application to linear model

Let us consider (X, Y) a couple of random variables taking values in Rd ×R such that

Y = XTθ + ε

with θ ∈ Rd deterministic and ε is a random variable taking values in R independent from X.
If the matrix E

[
XXT] is positive, θ is the unique minimizer of the functional GLM : Rd −→ R+

defined for all h ∈ Rd by

GLM(h) =
1
2

E

[(
Y− XTh

)2
]

.
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Then, the stochastic gradient algorithm for estimating θ is defined recursively for all n ≥ 0 by

θn+1 = θn + γn+1

(
Yn+1 − XT

n+1θn

)
Xn+1. (1.6)

The following result gives the almost sure rates of convergence of the estimates and is a direct
corollary of Theorem 1.3.2.

Corollaire 1.3.1. Suppose there exists η > 1
γ − 1 such that X admits a moment of order 4 + 4η and such

that ε admits a moment of order 2 + 2η. Let us also suppose that E
[
XXT] is positive. Then, gradient

estimates defined by (1.6) satisfy

‖θn − θ‖2 = O
(

ln n
nγ

)
a.s.

In Figure 1.1, we focus on the quadratic error of the estimates with respect to the sample size for
different values of γ. More precisely we consider γ = 0.5, 0.66, 0.75, 1 (although γ = 0.5 or 1 is out
of our framework). One can see that larger γ is, faster the algorithm converges. In addition, one
can remark that in the case where γ = 1, it seems to be more stable, but (one of) the price to pay is
an increased sensitivity to a possible bad initialization.
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Figure 1.1 – Evolution of the quadratic error of θn with respect to the sample size n for different
choices of γ in the linear regression case.

Application to logistic regression

Let (X, Y) a couple of random variables taking values in Rd × {0, 1} such that Y|X ∼ B
(
π
(
θTX

))
where θ ∈ Rd and π(x) = ex

1+ex . Under assumptions, θ is the unique minimizer of the function
Glog : Rd −→ R defined for all h ∈ Rd by

Glog(h) = E
[
log
(

1 + exp
(

hTX
))
− hTXY

]
.
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Then, the stochastic gradient algorithm for estimating θ is defined recursively for all n ≥ 0 by

θn+1 = θn + γn+1

(
Yn+1 − π

(
XT

n+1θn

))
Xn+1. (1.7)

The following result gives the almost sure rate of convergence of the estimates and is a direct
corollary of Theorem 1.3.2.

Corollaire 1.3.2. Suppose there exists η > 1
γ − 1 such that X admits a moment of order 2+ 2η and assume

that ∇2Glog(θ) = E
[
π
(
θTX

) (
1− π

(
θTX

))
XXT] is positive. Then, the gradient estimates defined by

(1.7) satisfy

‖θn − θ‖2 = O
(

ln n
nγ

)
a.s.

In Figure 1.2, we focus on the quadratic error of the estimates with respect to the sample size for
different values of γ. More precisely we consider γ = 0.5, 0.66, 0.75, 1. For γ = 0.5, 0.66 and 0.75,
one can see again that larger γ is, faster the algorithm converges. Nevertheless, in the case where
γ = 1, it does not converge faster at all. We will see later that it is due to a bad calibration of the
parameter cγ.
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Figure 1.2 – Evolution of the quadratic error of θn with respect to the sample size n for different
choices of γ in the logistic regression case.

Application to p-means

Let X be a random variable taking values in a separable Hilbert space H and let p ∈ (1, 2). Then,
the p-mean of X (denoted by mp) is, under conditions, the unique minimizer of the functional
Gp : H −→ R defined for all h ∈ H by

Gp(h) =
1
p

E
[
‖X− h‖p] .
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Remark that taking p = 2 would have leaded to the mean while the case p = 1 corresponds to the
geometric median. Let us suppose from now that the following assumptions are fulfilled:

(Hp-means1) X is not concentrated around single points: there is a positive constant Cp such that for all
h ∈ H,

E
[
‖X− h‖p−2

]
≤ Cp.

Under this assumption, G is locally strongly convex and mp is the unique minimizer of G. Fur-
thermore, the stochastic gradient algorithm for estimating mp is defined recursively for all n ≥ 0
by

mp,n+1 = mp,n + γn+1

(
Xn+1 −mp,n

)∥∥Xn+1 −mp,n
∥∥2−p . (1.8)

The following result gives the almost sure rates of convergence of the gradient estimates and is a
direct corollary of Theorem 1.3.2.

Corollaire 1.3.3. Suppose that Assumption (Hp-means1) holds. Suppose also that there is η > 1
γ − 1 such

that X admits a moment of order (p− 1)(2 + 2η). Then the gradient estimates defined by (1.8) satisfy

∥∥mp,n −m
∥∥2

= O
(

ln n
nγ

)
a.s.

In Figure 1.3, we focus on the evolution of the quadratic error of mp,n (with p = 1.5) with respect to
the sample size n for different choices of γ. Remark that here again, larger γ is, faster the algorithm
converges, and so, even for γ = 1.
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Figure 1.3 – Evolution of the quadratic error of mp,n with respect to the sample size n for different
choices of γ.



1.4 Convergence in law 23

1.4 Convergence in law

1.4.1 Convergence result

We now focus on the convergence in law of the gradient estimates. In this aim, let us now introduce
some usual assumptions:

(A3a) The Hessian of G is bounded on a neighborhood of m.

(A4a) There are a neighborhood Vm of m and a non-negative constant CVm such that for all h ∈ Vm,

∥∥∇G(h)−∇2G(m)(h−m)
∥∥ ≤ CVm ‖h−m‖2 .

(A5a) The function Σ defined for all h ∈ H by

Σ(h) := E
[
∇hg (X, h)∇hg (X, h)T

]
is continuous at m.

Let us now comment these hypothesis. First, Assumption (A3a) implies that the gradient of G
is locally Lipschitz. This is verified, in the case of linear and logistic regression since X admits
a moment of order 2 while in the case of p-means, this is verified since (Hp-means1) is fulfilled.
Assumption (A4a) ensures that the Hessian is locally Lipschitz and is crucial to give the rate of
convergence of the rest term in the Taylor’s expansion of the gradient. In the case of linear regres-
sion CVm = 0 while in the case of logistic regression, this hypothesis is verified since X admits a
moment of order 3. In the case of the estimation of p-means, (Hp-means2) (see Section 1.4.2) ensures
that (A4a) is fulfilled. Finally, (A5a) is crucial to get the convergence in law, and is verified since
X admits a second order moment for linear and logistic regressions and a moment of order 2p− 2
for p-means. In all the following, we will denote H := ∇2G(m) and Σ := Σ(m).

Theorem 1.4.1 ([GB17]). Suppose assumptions (A1η), (A2), (A3a), (A4a) and (A5a) hold, then

1√
γn

(mn −m)
L−−−−→

n→+∞
N (0, ΣRM)

with
ΣRM =

∫ +∞

0
e−sHΣe−sHds.

Then the stochastic gradient algorithm converges in law at a rate
√

γn. Furthermore, remark that
ΣRM is the solution of the Lyapunov equation

AH + HA = Σ.

Note that this result was already given in [Pel98] but here again, the proofs were not adapted to
the infinite dimensional case. The proof of Theorem 1.4.1 relies on the use of a martingale central
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limit theorem in Hilbert spaces due to [Jak88] that we apply on the second term on the right-hand
side of equality (1.5).

Remark 1.4.1. Note that assumptions given in Theorem 1.4.1 differs to the ones in [GB17]. More precisely,
in [GB17], the gradient of g was supposed to admit a moment of order four since a uniform bound of
E
[
‖mn −m‖4

]
was used to prove inequality (29), i.e to prove that for all ε > 0,

P

[
sup

0≤k≤n−1

1√
γn
‖βn,k+1γk+1ξk+1‖ > ε

]
−−−−→
n→+∞

0.

Nevertheless, since

P

[
sup

0≤k≤n−1

1√
γn
‖βn,k+1γk+1ξk+1‖ > ε

]
≤

n−1

∑
k=0

P

[
γk+1√

γn
‖βn,k+1‖op ‖ξk+1‖ 1‖mk−m‖≤1 > ε

]

+
n−1

∑
k=0

P

[
γk+1√

γn
‖βn,k+1‖op ‖ξk+1‖ 1‖mk−m‖>1 > ε

]

and since ‖mn −m‖ converges almost surely to 0, one can "easily" prove that the second term on the
right-hand side of previous inequality converges exponentially fast to 0 (almost surely). For the first term,
applying Markov inequality and thanks to Assumption (A1η), it comes

n−1

∑
k=0

P

[
γk+1

γn
‖βn,k+1‖op ‖ξn+1‖ 1‖mn−m‖≤1 > ε

]
≤ 1

γ
1+η
n ε2+2η

n−1

∑
k=0

γ
2+2η
k+1 ‖βn,k+1‖2+2η

op E
[
‖ξn+1‖2+2η 1‖mn−m‖≤1

]
≤ 1

γ
1+η
n ε2+2η

n−1

∑
k=0

γ
2+2η
k+1 ‖βn,k+1‖2+2η

op 22+2ηCη = O
(
γ

η
n
)

,

and inequality (29) in [GB17] is so satisfied.

1.4.2 Some applications

Application to linear regression

The following result gives the convergence in law of the gradient estimates defined by (1.6) and is
a direct corollary of Theorem 1.4.1.

Corollaire 1.4.1. Suppose there exists η > 1
γ − 1 such that X admits a moment of order 4 + 4η and such

that ε admits a moment of order 2 + 2η. Let us also suppose that E
[
XXT] is positive. Then, stochastic

gradient estimates defined by (1.6) satisfy

1√
γn

(θn − θ)
L−−−−→

n→+∞
N
(

0,
E
[
ε2]

2
Id

)
.

Remark that we give here a "strict" corollary of Theorem 1.4.1, but one can probably obtain the
same results with less restrictive assumptions on the moments of X and ε. In Figure 1.4, we con-
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sider the case where E
[
ε2] = 1, and rewrite Corollary 1.4.1 as

Cn :=
2

γn
‖θn − θ‖2 L−−−−→

n→+∞
χ2

d.

We then focus on the distribution of Cn for a sample size n = 5000 and for different choices of γ

(γ = 0.5, 0.66, 0.75). Remark that in both cases, the distribution function of Cn is very close to the
one of a Chi-square law with d degrees of freedom, which seems to confirm Corollary 1.4.1.
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Figure 1.4 – Comparison of the distribution function of Cn (with n = 5000 and for γ = 0.5, 0.66
and 0.75) with the distribution function of a Chi-square law with d degrees of freedom.

Application to logistic regression

The following result gives the convergence in law of the gradient estimates defined by (1.7) and is
a direct corollary of Theorem 1.4.1.

Corollaire 1.4.2. Suppose that there exists η > 1
γ − 1 such that X admits a moment of order max {3, 2 + 2η}.

Let us also suppose that E
[
π
(
XTθ

) (
1− π

(
XTθ

))
XXT] is positive. Then, stochastic gradient estimates

defined by (1.7) satisfy
1√
γn

(θn − θ)
L−−−−→

n→+∞
N
(

0,
1
2

Id

)
.

One can rewrite Corollary 1.4.2 as

Cn :=
2

γn
‖θn − θ‖2 L−−−−→

n→+∞
χ2

d.

In Figure 1.5, we focus on the distribution of Cn for a sample size n = 5000 and for different choices
of γ (γ = 0.5, 0.66, 0.75). Remark that in both cases, the distribution function of Cn is close to the
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one of a Chi-square law with d degrees of freedom but not enough to tell that, at time n = 5000,
we have achieved convergence.
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Figure 1.5 – Comparison of the distribution function of Cn (with n = 5000 and for γ = 0.5, 0.66
and 0.75) with the distribution function of a Chi-square law with d degrees of freedom.

Application to the estimation of p-means

In order to get the convergence in law of the gradient estimates of p-means, let us first introduce a
new assumption:

(Hp-means2) X is not concentrated around single points: there is a positive constant Cp such that for all
h ∈ H,

E
[
‖X− h‖p−3

]
≤ Cp.

This assumption implies (Hp-means1), and we denote the constant in the same way for the sake of
simplicity. This hypothesis is crucial to verify (A4a). Furthermore, note that in the case of p-means,
one has

H(mp) := ∇2Gp
(
mp
)
= E

[
1∥∥X−mp
∥∥2−p

(
IH + (p− 2)

(
X−mp

) (
X−mp

)T∥∥X−mp
∥∥2

)]
, (1.9)

and one has λmin

(
H(mp)

)
≥ (p − 1)E

[
1

‖X−mp‖2−p

]
> 0, and (A2) is so verified. Then, one can

obtain the convergence in law of the estimates of the p-means defined by (1.8).

Corollaire 1.4.3. Suppose that Assumption (Hp-means2) holds. Suppose also that there exists η > 1
γ − 1

such that X admits a moment of order (p− 1)(2 + 2η). Then the stochastic gradient estimates defined by
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(1.8) satisfy
1√
γn

(
mn,p −mp

) L−−−−→
n→+∞

N
(

0, Σ(
mp)

RM

)
with

Σ(mp) = E

[(
X−mp

) (
X−mp

)T∥∥X−mp
∥∥4−2p

]
and Σ(

mp)
RM =

∫ +∞

0
e−sH(mp)Σ(mp)e−sH(mp)ds.

1.4.3 Remarks

Remark that we only get a rate of convergence in law of order
√

γn with γ < 1, i.e one cannot not
obtain an "optimal" rate of order 1√

n . Intuitively, we can try to take γ = 1 to obtain a good rate
of convergence. Nevertheless, this implies to take cγ > 1

2λmin
, with λmin = λmin

(
∇2G(m)

)
. For

instance, in Figure 1.1, this assumption was satisfied and one can see that estimates converge at
the good rate. Nevertheless, in Figure 1.2, this condition was not fulfilled and one has observed
that the estimates did not converge at a good rate. Anyway, this approach generates two main
problems: (i) one has to calibrate the stepsequence according to the smallest unknown eigenvalue
of the Hessian, (ii) even if the stepsequence is well calibrated, and although one can obtain a
convergence in law of the form

√
n (mn −m)

L−−−−→
n→+∞

N
(
0, Σ′RM

)
,

where
Σ′RM =

∫ +∞

0
e−s

(
H− 1

2cγ
Id

)
Σe−s

(
H− 1

2cγ
Id

)
ds,

the asymptotic variance Σ′RM is not optimal. For instance, considering a M-estimate m̂n, under
regularity assumptions, one can prove that (see Proposition 2.2.1 for instance)

√
n (m̂n −m)

L−−−−→
n→+∞

N
(

0, H−1ΣH−1
)

,

and H−1ΣH−1 is a better variance in the sense that Σ′RM − H−1ΣH−1 is non-negative. This repre-
sents the main disadvantage of stochastic gradient algorithms, but we will see how to modify the
estimates in order to achieve the asymptotic efficiency.

1.5 Non asymptotic rates of convergence

As explained before, non asymptotic rates of convergence for stochastic gradient estimates have
been deeply studied in the strongly convex case (see [BM13] for instance). We focus here on the
case where the functional G is locally strongly convex. Some results where already given by [Bac14]
or [GP17] but under slightly restrictive assumptions on g, i.e supposing that the gradient of g
admits exponential moments or is uniformly bounded.
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1.5.1 Rate of convergence in quadratic mean

In order to give an explicit upper bound of the risk error, let us now give some additional assump-
tions:

(A1a’) There are non negative constants C̃1, C̃2 such that for all h ∈ H,

E
[
‖∇hg (X, h)‖2

]
≤ C̃1 + C̃2 (G(h)− G(m)) .

(A1b’) There are non negative constants C̃′1, C̃′2 such that for all h ∈ H,

E
[
‖∇hg (X, h)‖4

]
≤ C̃′1 + C̃′2 (G(h)− G(m))2 .

(A3b) The functional G is twice continuously differentiable on H and there is a positive constant
L∇G such that for all h ∈ H,

‖∇G(h)‖op ≤ L∇G.

(A4a’) There are positive constants λ0, rλ0 and a non-negative constant Cλ0 such that for all h ∈
B (m, rλ0),

λmin
(
∇2G(h)

)
≥ λ0 and

∥∥∇G(h)−∇2G(m)(h−m)
∥∥ ≤ Cλ0 ‖h−m‖2 .

Note that Assumption (A1a’) is very closed to (A1a) since if the function G is strongly convex,
(A1a’) implies (A1a) and one has the contrary if the gradient of G is Lipschitz, i.e if (A3b) is verified
for instance. This new assumption is crucial to obtain an uniform upper bound of the risk error.
In addition, remark that we introduce Assumption (A4a’) only for fixing some notations in the
sens that if Assumptions (A2) and (A4a) are fulfilled, then Assumption (A4a’) is also satisfied. In
addition, coupled with (A3b), it enables to give an upper bound of the rest term in the Taylor’s
expansion of the gradient, which will be crucial to obtain the rate of convergence in quadratic
mean of the gradient estimates.

Remark that in [GB21], two cases are differentiated: if ∇G is uniformly bounded or not, i.e if
C̃2 = C̃′2 = 0 or not. Nevertheless, in what follows, we do not give explicit constants and so decide
not to differentiate the cases. Whatever, one can read the Appendix to see the detailed version of
the results of this section. Let us now give the rate of convergence in quadratic mean of G (mn).

Lemma 1.5.1 ([GB21]). Suppose Assumptions (A1b’), (A2), (A3) and (A4a’) hold. Then, there are positive
constants A′0, A′1 such that for all n ≥ 1,

E
[
(G (mn)− G(m))2

]
≤ A′0e−

1
4 cγa0n1−γ

+ A′1n−2γ

with a0 :=
λ2

0 min
{

1,r2
λ0

}
L∇G

.
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Note that constants A′0 and A′1 are explicitly given in Lemma A.1.1 and A.1.2. In other words,
this lemma ensures that we have the usual rate of convergence E [(G (mn)− G(m))] = O (n−γ).
Remark that the first term is "generated" by the initialization error. In addition, if the functional
G is µ-strongly convex, one can take a0 = µ2

L∇G
, meaning that this term can eventually encounter

some troubles in the ill specified case, i.e if the eigenvalues of the Hessian are at different scales.
We will see in Chapter 3 the possible negative influence of this case on the estimates, and how to
solve it. We can now give an uniform bound of the quadratic mean error of the gradient estimates.

Theorem 1.5.1 ([GB21]). Suppose Assumptions (A1b’), (A2), (A3) and (A4a’) hold. Then, there are
positive constant A0, A1, A2 such that for all n ≥ 1,

E
[
‖mn −m‖2

]
≤ A0e−

1
4 λmincγn1−γ

+ A1e−
1
8 a0cγn1−γ

+ A2n−2γ +
21+γC̃1

λmin
cγn−γ,

with a0 :=
λ2

0 min
{

1,r2
λ0

}
L∇G

.

Remark that constants A0, A1 and A2 are explicitly given in Theorems A.1.1 and A.1.2. In other
words, we get the usual L2 rate of convergence for gradient estimates given by [BM13, Bac14, GP17]
and so, with weaker assumptions. Furthermore, note that every constants can be calculated or
recursively estimated. Let us now speak about the different terms in the upper bound of the
quadratic mean error. First, note that the main term 21+γC̃1

λmin
cγn−γ is analogous to the one in the

strongly convex case given by [BM13]. In addition, the term A0e−
1
4 λmincγn1−γ

is due to the initializa-
tion error while the terms A1e−

1
8 a0cγn1−γ

and A2
1

λ2
min

n−2γ are due to the error of approximation of

∇2G(m) (mn −m) by the gradient ∇G (mn), and are negligible.

Sketch of the proof. The proof relies on the induction relation:

E
[
‖mn+1 −m‖2 |Fn

]
≤ ‖θn − θ‖2 − 2γn+1 〈∇G (mn) , θn − θ〉+ γ2

n+1E
[
‖∇hg (Xn+1, mn)‖2 |Fn

]
which can be written, thanks to Assumptions (A1a’) and (A3) as

E
[
‖mn+1 −m‖2 |Fn

]
≤
(

1 +
1
2

L∇GC̃2γn+1

)
‖mn −m‖2 − 2γn+1 〈∇G (mn) , mn −m〉+ C̃1γ2

n+1

Remark that usually, one can "easily" conclude thanks to this induction relation when the func-
tional G is strongly convex. In our case, one has to linearize the gradient, i.e one can rewrite
previous inequality as

E
[
‖mn+1 −m‖2 |Fn

]
≤
(

1 +
1
2

L∇GC̃2γn+1

)
‖mn −m‖2 − 2γn+1 〈H (mn −m)− δn, mn −m〉+ C̃1γ2

n+1

≤
(

1− 2λminγn+1 +
1
2

L∇GC̃2γn+1

)
‖mn −m‖2 + 2γn+1 〈δn, mn −m〉+ C̃1γ2

n+1.
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Observing that under Assumptions (A3) and (A4a’) one has ‖δn‖ ≤ Lδ (G (mn)− G(m)), it comes

E
[
‖mn+1 −m‖2 |Fn

]
≤
(

1− λminγn+1 +
1
2

L∇GC̃2γn+1

)
‖mn −m‖2 + C̃1γ2

n+1

+
L2

δ

λmin
γn+1 (G (mn)− G(m))2 .

Then, in order to use Proposition A.5 in [GBWW21], one has to upper bound E
[
(G (mn)− G(m))2

]
.

For the sake of simplicity, we only explain here how to upper bound E [G (mn)− G(m)] since the
reasoning is quite analogous. With the help of a Taylor’s expansion, one has thanks to Assumption
(A3)

E [G (mn+1) |Fn] = G (mn)− γn+1 ‖∇G (mn)‖2 +
1
2

L∇Gγn+1E
[
‖∇hg (Xn+1, mn)‖2 |Fn

]
.

Furthermore, thanks to Assumption (A4a’), ‖∇G (mn)‖2 ≥ 2a0 (G (mn)− G(m)). Then, with the
help of (A1a’), one has

E [G (mn+1)− G(m)|Fn] ≤
(

1− 2a0γn+1 +
1
2

L∇GC̃2γ2
n+1

)
(G (mn)− G(m)) + C̃1γ2

n+1,

and the upper bound is derived from Proposition A.5 in [GBWW21].

1.5.2 Lp rates of convergence

In this section, we focus on the Lp rates of convergence of the estimates, for any p > 0. In this aim,
let us introduce a new assumption:

(A1p) There are positive constants p, Cp such that for all h ∈ H,

E
[
‖∇hg (X, h)‖2p

]
≤ Cp

(
1 + ‖h−m‖2p

)
.

We can now give the Lp rates of convergence of the stochastic gradient estimates.

Theorem 1.5.2 ([GB16b]). Suppose Assumption (A1p) holds for any p > 0 and that Assumptions (A2),
(A3) and (A4a’) hold too. Then

E
[
‖mn −m‖2p

]
= O

(
γ

p
n
)

.

Remark that contrary to the L2 rate of convergence, we were not able to exhibit an explicit upper
bound of the Lp error. Nevertheless, leading up to the Lp rates of convergence can be crucial to
obtain the rate of convergence of the recursive estimates of the Median Covariation Matrix for
instance (see Chapter 5 or [CGB15]).
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1.5.3 Some applications

Application to logistic regression

Let us consider the logistic regression model. The following corollary gives an upper bound of the
quadratic mean error of the estimates obtained with the help of the stochastic gradient algorithm
defined by (1.7).

Corollaire 1.5.1. Suppose that X admits a fourth order moment and that there are positive constants
rlog, λlog such that for all h ∈ B

(
θ, rlog

)
, λmin

(
∇2G(h)

)
≥ λlog. Then, there are positive constants

A0,log, A1,log, A2,log such that for all n ≥ 1,

E
[
‖θn − θ‖2

]
≤ A0,loge−λlogcγn1−γ

+ A1,loge−
1
4 alogcγn1−γ

+ A2,logn−2γ +
2γE

[
‖X‖2

]
cγ

λlog
n−γ

where alog =
4λ2

log min
{

1,r2
log

}
E[‖X‖2]

.

Remark that constants A0,log, A1,log and A2,log are explicitly given in Corollary A.1.1. Note also that
the convergence of projected estimates in the particular case where X is bounded can be easily
derived from Theorem 3 in [BM13]. One can then check that the bounds are analogous, up to the
term A1,loge−

1
4 alogcγn1−γ

+ A2,logn−2γ, which is the "price to pay" to avoid projecting. Remark that
this result is also analogous to the one in [GP17], but without supposing that X is bounded.

In Figure 1.6, we focus on the evolution of the quadratic mean error of the estimates θn with respect
to the sample size n for γ = 0.66 and γ = 0.75. We also compare it to the main term of theoretical

bound 21+γC̃1
λmin

cγn−γ =
21+γE[‖X‖2]

λmin
cγn−γ, where λmin has been estimated with the help of a Monte

Carlo method. One can remark that he slope are analogous, meaning that we have the good rate of
convergence. Nevertheless, Figure 1.6 shows that the bound is quite rough. Indeed, we could have
derived from the convergence in law that the bound should have been, in the case of the logistic
regression, of the form 2d

nγ in this case.

Application to p-means

In what follows, let us consider positive constants K, cK such that P [‖X‖ ≤ K] ≥ cK. Then, for all
h ∈ B

(
mp, 1

)
,

λmin
(
∇2G (h)

)
≥ 1(

K +
∥∥mp

∥∥+ 1
)2−p (p− 1)cK =: λK. (1.10)

The following corollary gives the rate of convergence in quadratic mean of the recursive estimates
of the p-mean defined by (1.8).

Corollaire 1.5.2. Suppose Assumption (Hp-means2) holds and that X admits a 2p-th order moment. Then,
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Figure 1.6 – Comparison of the evolution of the quadratic mean error of estimates θn (with respect
to the sample size n with γ = 0.66, 0.75) with the main term of the theoretical bound given by
Corollary 1.5.1

there are positive constants A0,p, A1,p and A2,p such that for all n ≥ 1,

E
[∥∥mp,n −mp

∥∥2
]
≤ A0,pe−

1
4 λKcγn1−γ

+ A1,pe−
1
8

λ2
K

Cp cγn1−γ

+ A2,pn−2γ +
21+γ

(
1 + 2Gp

(
mp
))

λK
cγn−γ.

Remark that constants A0,p, A1,p and A2,p are explicitly given in Corollary A.1.2.
In Figure 1.7, we focus on the evolution of the quadratic mean error of the estimates mp,n with
respect to the sample size n for γ = 0.66 and γ = 0.75. We also compare it to the main term

of theoretical bound 21+γC̃1
λmin

cγn−γ =
21+γ(1+2G(mp))

λmin
cγn−γ, where λmin has been estimated with the

help of a Monte Carlo method. One can remark that he slope are analogous, meaning that we have
the good rate of convergence but Figure 1.7 suggests that the bound is quite rough.
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Figure 1.7 – Comparison of the evolution of the quadratic mean error of estimates mp,n (with
respect to the sample size n with γ = 0.66, 0.75) with the main term of the theoretical bound given
by Corollary 1.5.2



Chapter 2

Averaged Stochastic Gradient algorithm

This chapter is based on [GB16b, GB17, GB21].
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2.1 Introduction

We have seen in previous chapter that it is nearly impossible to obtain an optimal asymptotic
behavior for stochastic gradient estimates. A usual way to accelerate the convergence of gradient
estimates has been introduce by [Rup88] and [PJ92], and consists in considering the averaged
stochastic gradient algorithm. More precisely, this method consists in taking the averaging of all
the estimates obtained with the help of the stochastic gradient algorithm at time n, i.e to consider
for all n ≥ 0,

mn =
1

n + 1

n

∑
k=0

mk. (2.1)
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Remark that we are still speaking about online estimates that necessitates only few operations to
be updated since they can be written recursively for all n ≥ 0 as

mn+1 = mn − γn+1∇hg (Xn+1, mn)

mn+1 = mn +
1

n + 2
(mn+1 −mn) ,

with m0 = m0. Remark that asymptotic results such that the almost sure rates of convergence as
well as the asymptotic efficiency of the averaged estimates are given in the finite dimensional case
by [Pel00] for instance. Furthermore, as for gradient estimates, some L2 rates of convergence were
given by [BM13] for the strongly convex case, and [Bac14, GP17] for the strictly convex case with
gradient admitting exponential moments or bounded.

We focus here on the original averaged algorithm but it is no less important to mention that several
modifications of these estimates exist in the literature. For instance, in order to give more impor-
tance to the last iterates of the gradient algorithm, a weighted averaged version can be considered
[MP11]. In addition, a parallelized/distributed architecture of these algorithms has been studied
to deal with the case where the sample is split into subsamples which are dealt with independently
by different agents (cores, processors, computer servers,...) [GBS20, BFHJ11, BFH13, PD19].

In this chapter, we ensure that all the asymptotic results given by [Pel00] remain true even if H is
an infinite dimensional space. In addition, we establish an uniform upper bound of the quadratic
mean error of averaged estimates under weak conditions before giving their Lp rates of conver-
gence. All the theoretical results are illustrated on three applications: the estimation of the param-
eter of linear and logistic regressions as well as the estimation of p-means.

2.2 Asymptotic rates of convergence

2.2.1 Almost sure rates of convergence

Note that by definition of the averaged algorithm and thanks to Toeplitz lemma, the convergence
of gradient estimates imply the convergence of their averaged version. We can now focus on the
almost sure rates of convergence of the averaged estimates.

Theorem 2.2.1 ([GB16b]). Suppose Assumptions (A1η), (A2), (A3a) and (A4a) hold. Then, for all δ > 0,

‖mn −m‖2 = o
(
(ln n)1+δ

n

)
a.s.

Remark that up to the log term, we have a 1/n rate of convergence. Observe that an analogous
result was already given by [Pel00] for finite dimensional spaces, but depending on the ones given
by [Pel98] and not available for infinite dimensional spaces. Furthermore, note that one could
obtain a ln n term (instead of ln n1+δ) supposing that (A5a) holds.
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Sketch of the proof. First, one has to remark that decomposition (1.4) can be written as

γn+1H (mn −m) = (mn −m)− (mn+1 −m) + γn+1ξn+1 − γn+1δn

leading, dividing by γn+1, to

H (mn −m) =
(mn −m)− (mn+1 −m)

γn+1
+ ξn+1 − δn.

Summing these inequalities and dividing by n + 1, it comes

H (mn −m) =
1

n + 1

n

∑
k=0

(mk −m)− (mk+1 −m)

γk+1
+

1
n + 1

n

∑
k=0

ξk+1 −
1

n + 1

n

∑
k=0

δk (2.2)

and one can conclude by giving the rate of convergence of each term on the right-hand side of
previous equality. More precisely, one should first use an Abel’s transform on the first term on
the right-hand side of equality (2.2). Then, with the help of Theorem 1.3.2, one can prove that the
first and third term on the right-hand side are negligible before using a law of large numbers for
martingales to obtain the rate of convergence of the second term.

2.2.2 Asymptotic efficiency

Let us now establish the asymptotic efficiency of the averaged estimates.

Theorem 2.2.2 ([GB17]). Suppose Assumptions (A1η), (A2), (A3a), (A4a) and (A5a) hold. Then,

√
n (mn −m)

L−−−−→
n→+∞

N
(

0, H−1ΣH−1
)

.

The proof of Theorem 2.2.2 consists in applying a Central Limit Theorem in Hilbert spaces given
by [Jak88] on the second term on the right-hand side of equality (2.2). Note that we give quite
different assumptions compare to [GB17]. More precisely, the gradient of g was supposed to admit
a moment of order four since an uniform bound of E

[
‖mn −m‖4

]
was used to prove that for all

ε > 0,

P

[
sup

0≤k≤n

1√
n
‖ξk+1‖ > ε

]
−−−−→
n→+∞

0. (2.3)

Nevertheless, one has

P

[
sup

0≤k≤n

1√
n
‖ξk+1‖ > ε

]
≤

n

∑
k=0

P

[
1√
n
‖ξk+1‖ 1‖mn−m‖≤1 > ε

]
+

n

∑
k=0

P

[
1√
n
‖ξk+1‖ 1‖mn−m‖>1 > ε

]
≤ 22+2η

nηε2+2η
Cη +

C1

nε2

n

∑
k=0

P [‖mn −m‖ > 1] +
C2

nε2

n

∑
k=0

E
[
‖mn −m‖2 1‖mn−m‖>1

]

and since the sequence
(

E
[
‖mn −m‖2

])
is uniformly bounded [GB16b], E

[
‖mn −m‖2 1‖mn−m‖>1

]
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converges to 0. Then, condition (2.3) is satisfied.

Remark that under regularity assumptions, it is not possible to find estimates with a better con-
vergence, and so, whatever the used methods. For instance, Proposition 2.2.1 ensures that M-
estimates converge at the same rate as the averaged estimates.

Proposition 2.2.1. Let us suppose that (A2) and the following assumptions are fulfilled:

• The M-estimate m̂n converges in probability to m.

• For almost every x, the function g(x, .) is twice continuously differentiable.

• For almost every x, the Hessian ∇2
hg(x, .) is L(x)-Lipschitz, i.e for h, h′ ∈ H,

∥∥∇2
hg (x, h)−∇2

hg
(
x, h′

)∥∥
op ≤ L(x)

∥∥h− h′
∥∥ .

• L(X) and ∇2
hg(X, m) admit a first order moment.

Then √
n (m̂n −m)

L−−−−→
n→+∞

N
(

0, H−1ΣH−1
)

Then, under regularity assumptions, it is not possible to achieve a better rate of convergence than
averaged estimates. The main possible gain of iterative methods compare to online methods will
be on the rest term. More precisely, the rate of convergence of the main terms for iterative methods
will depend on the sample size and on the number of iterations while it will only depend on the
sample size for recursive algorithms. Then, with an infinite computational cost, i.e doing as much
iterations as necessary, it is (nearly) impossible to beat iterative algorithms (including mini-batch
versions).

2.2.3 Some applications

Application to linear model

The averaged version of the stochastic gradient algorithm defined by (1.6) is given recursively for
all n ≥ 0 by

θn+1 = θn + γn+1

(
Yn+1 − XT

n+1θn

)
Xn+1

θn+1 = θn +
1

n + 2
(
θn+1 − θn

)
, (2.4)

with θ0 = θ0. The following corollary gives the almost sure rates of convergence of the estimates
as well as their asymptotic efficiency.



2.2 Asymptotic rates of convergence 37

Corollaire 2.2.1. Suppose there is η > 1
γ − 1 such that X and ε admit respectively moments of order 4+ 4η

and 2 + 2η. Furthermore, suppose that H(LM) := E
[
XXT] is positive. Then, for all δ > 0, the averaged

estimates θn defined by (2.4) satisfy

∥∥θn − θ
∥∥2

= o
(
(ln n)1+δ

n

)
a.s and

√
n
(
θn − θ

) L−−−−→
n→+∞

N
(

0, E
[
ε2]H−1

(LM)

)
.

In Figure 2.1, we focus on the evolution of the quadratic error of the estimates θn, θn with respect
to the sample size for γ = 0.66 and γ = 0.75. Whatever the choice of γ, one can remark that
since the gradient estimates achieve convergence, the averaging enables to accelerate this last one.
In addition, note that the slope of the quadratic error of the averaged estimates is close to −1 for
n large enough, which seems to confirm Corollary 2.2.1. Finally, remark that for γ = 0.66, the
gradient estimates achieve convergence earlier that for γ = 0.75, leading the averaged estimates
to converge faster for moderate sample size.
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Figure 2.1 – Evolution of the quadratic error of gradient estimates θn (SGD) and their averaged
version θn (ASGD) with respect to the sample size n for different choices of γ in the case of the
linear regression.

Remark that one can also recursively estimate H(LM) and E
[
ε2] =: σ2

(LM) as

H(LM),n+1 = H(LM),n +
1

n + 2

(
Xn+1XT

n+1 − H(LM),n

)
σ̂2
(LM),n+1 = σ̂2

(LM),n +
1

n + 2

((
Yn+1 − XT

n+1θn

)2
− σ̂2

(LM),n

)
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and check that the estimates are strongly consistent. Then, thanks to Corollary 2.2.1, one has

Cn :=
n
(
θn − θ

)T
Hn
(
θn − θ

)
σ̂2

n

L−−−−→
n→+∞

χ2
d.

In Figure 2.2, we focus on the distribution of Cn for a sample size n = 5000 and for different choices
of γ (γ = 0.66, 0.75). Remark that in both cases, the distribution function of Cn is close to the one of
a Chi-square law with d degrees of freedom but not enough to tell that at time n = 5000, we have
achieved convergence. Remark that this is also probably due to the cumulative error estimation of
θ, H and σ2.
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Figure 2.2 – Comparison of the distribution function of Cn (with n = 5000 and for γ = 0.66 and
0.75) with the distribution function of a Chi-square law with d degrees of freedom.

Application to logistic regression

The averaged version of the stochastic gradient defined by (1.7) is given recursively for all n ≥ 0
by

θn+1 = θn + γn+1

(
Yn+1 − π

(
XT

n+1θn

))
Xn+1

θn+1 = θn +
1

n + 2
(
θn+1 − θn

)
(2.5)

with π(x) = exp(x)
1+exp(x) and θ0 = θ0. The following corollary gives the almost sure rates of conver-

gence of the estimates as well as their asymptotic efficiency.

Corollaire 2.2.2. Suppose that X admits a moment of order 4 and that H(log) = E
[
π
(
XTθ

) (
1− π

(
XTθ

))
XXT]
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is positive. Then, the averaged estimates defined by (2.5) satisfy for all δ > 0,

∥∥θn − θ
∥∥2

= o
(
(ln n)1+δ

n

)
a.s and

√
n
(
θn − θ

) L−−−−→
n→+∞

N
(

0, H−1
(log)

)
.

In Figure 2.3, we focus on the evolution of the quadratic error of the estimates θn, θn with respect
to the sample size for γ = 0.66 and γ = 0.75. Note that gradient estimates spend much time
to achieve convergence, so that their averaged version spend much more time to accelerate the
convergence. Nevertheless, for n large enough, the slope of the quadratic error of the averaged
estimates is close to −1, which seems to confirm Corollary 2.2.1.
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Figure 2.3 – Evolution of the quadratic error of gradient estimates θn (SGD) and their averaged
version θn (ASGD) with respect to the sample size n for different choices of γ in the case of the
logistic regression.

Remark that one can estimate H(log) recursively as

Hlog,n+1 = Hlog,n +
1

n + 2

(
π
(

XT
n+1θn

) (
1− π

(
XT

n+1θn

))
Xn+1XT

n+1 − Hlog,n

)
,

i.e for all n ≥ 0,

Hlog,n =
1

n + 1

(
Hlog,0 +

n

∑
k=1

π
(

XT
k θk−1

) (
1− π

(
XT

k θk−1

))
XkXT

k

)
.

Then, one can easily prove that it is strongly consistent and thanks to Corollary 2.2.2, it comes

Cn := n
(
θn − θ

)T
Hlog,n

(
θn − θ

) L−−−−→
n→+∞

χ2
d.

In Figure 2.4, we focus on the distribution of Cn for a sample size n = 5000 and for different choices
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of γ (γ = 0.660.75). Remark that in both cases, the distribution function of Cn approaches the one
of a Chi-square law with d degrees of freedom but not enough to tell that at time n = 5000, we
have achieved convergence. In addition, it seems that taking γ small leads the gradient estimates
to converge faster, which leads to have the distribution of Cn closer to the one of the Chi-square
distribution in this case.
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Figure 2.4 – Comparison of the distribution function of Cn (with n = 5000 and for γ = 0.66 and
0.75) with the distribution function of a Chi-square law with d degrees of freedom.

Application to p-means

The averaged version of the stochastic gradient algorithm defined by (1.8) is given recursively for
all n ≥ 0 by

mp,n+1 = mp,n + γn+1
Xn+1 −mp,n∥∥Xn+1 −mp,n

∥∥2−p

mp,n+1 = mp,n +
1

n + 2
(
mp,n+1 −mp,n

)
(2.6)

with mp,0 = mp,0. Then, the following corollary gives the almost sure rates of convergence of the
averaged estimates as well as their asymptotic efficiency.

Corollaire 2.2.3. Suppose that Assumption (Hp-means2) holds. Suppose also that there exists η > 1
γ − 1

such that X admits a moment of order (p− 1)(2+ 2η). Then, the averaged estimates defined by (2.6) satisfy
for all δ > 0

∥∥mp,n −mp
∥∥2

= o
(
(ln n)1+δ

n

)
a.s and

√
n
(
mp,n −mp

) L−−−−→
n→+∞

N
(

0, H−1
(mp)

Σ(mp)H−1
(mp)

)
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with H(mp) defined by (1.9) and Σ(mp) = E

[
(X−mp)(X−mp)

T

‖X−mp‖4−2p

]
.

In Figure 2.5, we focus on the evolution of the quadratic error of the estimates mp,n, mp,n with
respect to the sample size for γ = 0.66 and γ = 0.75. The conclusions in this case are the same as
the ones for the linear regression case.
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Figure 2.5 – Evolution of the quadratic error of gradient estimates mp,n (SGD) and their averaged
version mp,n (ASGD) with respect to the sample size n for different choices of γ.

2.3 Non-asymptotic rates of convergence

In this section, we focus on the non asymptotic rates of convergence of averaged stochastic gradient
estimates under weak assumptions, i.e under the framework given in Section 1.5.

2.3.1 Rates of convergence in quadratic mean

As for the stochastic gradient estimates, the results for the averaged estimates where split into
two cases in [GB21]: ∇G bounded or not. Nevertheless, in what follows, we do not give explicit
constants and so decide not to differentiate the cases. Whatever, one can read Appendix to see the
detailed version of the results of this section. The following theorem gives a first upper bound of
the quadratic mean error of the averaged estimates.

Theorem 2.3.1 ([GB21]). Suppose Assumptions (A1b’), (A2), (A3) and (A4a’) hold. Then, there are
positive constants Aav and Bav such that for all n ≥ 1,

λmin

√
E
[
‖mn −m‖2

]
≤ C̃1√

n + 1
+

Aav

(n + 1)γ
+

2
1+γ

2 5
√

C̃1√cγ

√
λmin

1

(n + 1)1− γ
2
+

Bav

(n + 1)
1+γ

2

.
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Constants Aav and Bav are explicitly given in Theorems A.2.1 or A.2.3. In other words, we achieve
the usual rate of convergence 1

n and so, under weak assumptions. Remark that the two main
rest terms are of order 1

nγ and 1
n1−γ/2 suggesting that an optimal choice of γ should be γ = 2/3.

Nevertheless, in [GP17], the authors consider the case where∇g admits exponential moments and
give upper bounds of the quadratic mean errors for each the best rate is achieved for γ = 3/4.
Anyway, all these upper bounds can be considered as quite rough, so that it is quite complicated
to answer theoretically the question: what a good choice of γ is?

In order to get a (quasi) optimal rate of convergence for the averaged estimates, let us suppose
from now that the following assumption is fulfilled:

(A5b) The function Σ defined for all h ∈ H by Σ(h) = E
[
∇hg (X, h)∇hg (X, h)T

]
is LΣ-Lipschitz.

The following theorem ensures that the averaged estimates achieve the Cramer-Rao bound under
our framework.

Theorem 2.3.2 ([GB21]). Suppose Assumptions (A1b’), (A2), (A3), (A4a’) and (A5b) hold. Then, there
are positive constants Aav and B′av such that for all n ≥ 1,√

E
[
‖mn −m‖2

]
≤
√

Tr (H−1ΣH−1)√
n + 1

+
Aav√

λmin(n + 1)γ
+

2
1+γ

2 5
√

C̃1√cγ λmin

1

(n + 1)1− γ
2
+

B′av√
λmin(n + 1)

1+γ
2

.

Note that constants Aav and B′av are explicitly given in Theorems A.2.2 or A.2.4. Remark also that

up to rest terms, we achieve the Cramer-Rao bound, i.e E
[
‖mn −m‖2

]
' Tr(H−1ΣH−1)

n+1 . Indeed,
under regularity assumptions, any estimates m̃n should verify for almost any m ∈ H:

lim inf
n

nE
[
‖m̃n −m‖2

]
≥ Tr

(
H−1ΣH−1

)
.

Sketch of the proofs The proofs rely on decomposition (2.2). Indeed, thanks to triangular in-
equality, one has

√
E
[
‖mn −m‖2

]
≤ 1

n + 1

√√√√√E

∥∥∥∥∥ n

∑
k=0

(mk −m)− (mk+1 −m)

γk+1

∥∥∥∥∥
2
+

1
n + 1

√√√√√E

∥∥∥∥∥ n

∑
k=0

ξk+1

∥∥∥∥∥
2


+
1

n + 1

n

∑
k=0

√
E
[
‖δk‖2

]
.

Then, one can use Theorem 1.5.1 and Lemma 1.5.1 to get an upper bound of each term on the
right-hand side of previous inequality.

2.3.2 Lp rates of convergence

We now focus on Lp rates of convergence of the averaged estimates, for any p > 0.
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Theorem 2.3.3 ([GB16b]). Suppose Assumption (A1p) holds for any p > 0 and that Assumptions (A2),
(A3) and (A4a’) hold too. Then

E
[
‖mn −m‖2p

]
= O

(
1

np

)
.

Remark that contrary to the L2 rate of convergence, we were not able to exhibit an explicit upper
bound of the Lp error. Nevertheless, as explained before, leading up to the Lp rates of convergence
can be crucial to obtain the convergence of the recursive estimates of the Median Covariation Ma-
trix for instance (see Chapter 5 or [CGB15]).

2.3.3 Some applications

Logistic regression

Let us consider the logistic regression model. The following corollary gives an upper bound of the
quadratic mean error of the averaged estimates defined by (2.5).

Corollaire 2.3.1. Suppose X admits a moment of order 4 and that there are positive constants rlog, λlog such
that for all h ∈ B

(
θ, rlog

)
, λmin

(
∇2Glog(h)

)
≥ λlog. Then, there are positive constants Aav,log, Bav,log

such that for all n ≥ 1,

√
E
[∥∥θn − θ

∥∥2
]
≤

√
Tr
(

H−1
log

)
√

n + 1
+

Aav,log

(n + 1)γ
+

2
γ
2 5
√

E [‖X‖4]
√cγλlog(n + 1)1− γ

2
+

Bav,log

(n + 1)
1+γ

2

Remark that constants Aav,log and Bav,log are explicitly given in Corollary A.2.1.

In Figure 2.6, we focus on the evolution of the quadratic mean error of the estimates θn with respect
to the sample size n for γ = 0.66 and γ = 0.75. We also compare it to the main term of the

theoretical bound
Tr
(

H−1
log

)
n given by Corollary 2.3.1. One can remark that the curves of the quadratic

mean errors seem to tend to the theoretical bound, meaning that the remainder terms are nearly
negligible.

Application to the estimation of p-means

We now focus on the estimation of p means. The following corollary gives an upper bound of the
quadratic mean error of the averaged estimates obtained with (2.6).

Corollaire 2.3.2. Suppose Assumption (Hp-means2) holds and that X admits a 2p-th order moment. Then,
there are positive constants Aav,p and Bav,p such that for all n ≥ 1,

√
E
[∥∥mn,p −mp

∥∥2
]
≤

√
Tr
(

H−1
(mp)

Σ(mp)H−1
(mp)

)
√

n + 1
+

Aav,p

(n + 1)γ
+

2
1+γ

2 5
√

1 + 2G
(
mp
)

√cγ

√
λK(n + 1)1− γ

2
+

Bav,p

(n + 1)
1+γ

2

.
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Figure 2.6 – Comparison of the evolution of the quadratic mean error of estimates θn (with respect
to the sample size n with γ = 0.66, 0.75) with the main term of the theoretical bound given by
Corollary 2.3.1

Remark that constants Aav,log and Bav,log are explicitly given in Corollary A.2.2.
In Figure 2.7, we focus on the evolution of the quadratic mean error of the estimates mp,n with
respect to the sample size n for γ = 0.66 and γ = 0.75. We also compare it to the main term of

theoretical bound
Tr
(

H−1
(mp)

Σ(mp)H−1
(mp)

)
n given by Corollary 2.3.2. One can remark that the curves of

the quadratic mean errors are very closed to the theoretical bound, meaning that the remainder
terms are negligible, i.e we achieve convergence.
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Figure 2.7 – Comparison of the evolution of the quadratic mean error of estimates mp,n (with
respect to the sample size n with γ = 0.66, 0.75) with the main term of the theoretical bound given
by Corollary 2.3.2
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Chapter 3

Online Stochastic Newton algorithms

This chapter is based on [BGBP19, CGBP20, BGB20, GBPL22].
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3.1 Introduction

We have seen that first-order online algorithms have become hegemonic: by a low computational
cost per iteration, they allow performing machine learning tasks on large datasets, processing
each observation only once. Furthermore, as explained in previous chapters, stochastic gradient
methods and their averaged versions are known to be asymptotically efficient [PJ92, Pel00, GB17]
and it was proven that, under mild assumptions, averaged estimates can achieve the Cramer-Rao
bound (up to rest terms) [GP17, BM13]. However, these first-order online algorithms can be shown
in practice to be very sensitive to the Hessian structure of the risk they are supposed to minimize.
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For example, when the spectrum of local Hessian matrices shows large variations among their
eigenvalues, the stochastic gradient algorithm may be stuck far from the optimum (see for instance
the application of [BGBP19, Section 5.2] or Section 3.2).

To address this issue, (quasi) online second-order optimization has been also considered in the
literature. In view of avoiding highly costly iterations, most online (quasi) second-order algorithms
rely on approximating the Hessian matrix by only using the informations given by the gradient or
assuming a diagonal structure of the Hessian. These methods result in choosing a different step
size with respect to the components of the current gradient estimate, hence the name of adaptive
stochastic gradient algorithms, such as the Adagrad [DHS11] or Adadelta [Zei12] methods.

For more general structures, a Stochastic Quasi-Newton method was introduced in [BHNS16],
relying on limited-memory BFGS updates. Specifically, local curvature is captured through (sub-
sampled) Hessian-vector products, instead of differences of gradients which enables to provide a
stochastic Quasi-Newton algorithm which cost is close to the one of standard SGDs. Neverthe-
less, two main problems are encountered: the first theroetical one is that the convergence study in
[BHNS16] requires the boundedness from above and from below of the spectrum of the estimated
Hessian inverses, uniformly over the space of parameters, which can be very restrictive. The sec-
ond technical one it that in the framework considered in [BHNS16] the stochastic BFGS algorithm
can be seen as a refinement of mini-batches gradient algorithms, which is not explicitly derived for
online purposes.

In [LP20], the authors introduced a conditioned SGD based on a preconditioning of the gradient
direction. The preconditioning matrix is typically an estimate of the inverse Hessian at the opti-
mal point, for which they obtain the asymptotic efficiency. Therefore, the proposed conditioned
SGD entails a full inversion of the estimated Hessian, requiring O(d3) operations per iteration in
general, which is less compatible with large-scale data.

In this chapter, we consider a unified and general framework that includes various applications
of machine learning tasks, for which we propose a stochastic Newton algorithm. For simplicity,
a first version of this algorithm is studied choosing the step size 1

n . Under suitable and standard
assumptions, we define in Section 3.3 the Stochastic Newton algorithm before giving asymptotic
results such as almost sure rates of convergence and the asymptotic efficiency.

Nevertheless, considering step sequences of order 1/n can lead to poor results in practice [CGBP20].
In order to overcome this problem, we introduce in Section 3.4 a Weighted Averaged Stochastic
Newton Algorithm (WASNA) which consists in taking a stepsequence of order 1

nγ before weighted
averaging over the iterates.

We will see all along this chapter, through examples (linar logistic and softmax regressions for
instance) how the estimates of the Hessian can be constructed and easily updated over iterations
using genuine second-order information. Indeed, given a particular structure of the Hessian esti-
mates that will be encountered in various applications, the Sherman-Morrison formula enables to
directly update the inverse of the Hessian matrix at each iteration in O(d2) operations1.

1Remark that "only" the examples of linear, logistic and softmax regressions are given here. Nevertheless, one can
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3.2 Why Stochastic Newton Algorithms?

Contrary to deterministic optimization, one can not use stochastic Newton algorithms with the
purpose to improve the rate of convergence. Indeed, we have seen that under regularity assump-
tions, averaged estimates have already an optimal asymptotic behavior. The idea is to take into
account the second order information given by the Hessian to generate stepsequences adapted to
each direction of the gradient. This can enable to give better results, in practice, for ill-conditioned
problems, i.e in the case where the eigenvalues of the Hessian are at different scale for instance. To
illustrate it, let us recall that stochastic gradient estimates (mn)n satisfy

E [mn+1|Fn] = mn − γn+1∇G (mn) .

Then, if mn ' m, one has ∇G (mn) ' ∇2G(m) (mn −m), leading to

E [mn+1 −m|Fn] ' mn −m− γn+1∇2G(m) (mn −m) =
(

Id − γn+1∇2G (m)
)
(mn −m) .

Then, if the eigenvalues of ∇2G(m) are at different scales, it is not possible to tune the parameter
cγ to have a step adapted to each direction. To be convinced, let us take the simple example of the
linear regression given by

Y = XTθ + ε

with ε ∼ N (0, 1), θ ∈ R2 and

X ∼ N
(

0,

(
10−2 0

0 102

))
.

For all h ∈ R2, one so has

∇2G(h) = E
[

XXT
]
=

(
10−2 0

0 102

)
.

Then, since we exactly have∇G (mn) = ∇2G(m) (θn − θ), denoting by θ(1) and θ(2) (resp. θ
(1)
n and

θ
(2)
n ) the coordinates of θ (resp. θn), it comes

E
[
θ
(1)
n+1 − θ(1)|Fn

]
=

(
1− cγ10−2

(n + 1)γ

)(
θ
(1)
n − θ(1)

)
E
[
θ
(2)
n+1 − θ(2)|Fn

]
=

(
1− cγ102

(n + 1)γ

)(
θ
(2)
n − θ(2)

)
.

Then, choosing cγ close to 102 would allows to have a step adapted to the first coordinate but
would make explode the second coordinate, in the sense that for the first steps, we would have
steps of order 104. Oppositely, choosing cγ = 10−2 would allow to take a step adapted to the
second coordinate, but we would have a too small step for the first coordinate. Then, the estimates
of the first coordinates should not move. Taking one in between, i.e taking cγ close to 1 would lead

also deal with non-linear regression [CGBP20] or ridge regression [GBPL22].
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to a bad behavior for the two components. This seems to be confirmed by Figure 3.1. Note that in
Figure 3.1, a less ill conditioned context has been chosen, i.e the eigenvalues of the Hessian have
been chosen equal to 0.1 and 10.
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Figure 3.1 – Evolution of the estimates of the first coordinate (first line) and of the second one
(second line) with, from the left to the right, cγ = 0.1, cγ = 1 and cγ = 10.

Then, a solution to overcome this problem is to suppose the Hessian ∇2G(m) to be invertible and
to consider a stochastic Newton algorithm, i.e to consider an algorithm of the form

mn+1 = mn −
1

n + 1
∇2G(m)−1∇hg (Xn+1, mn) .

In the case of the linear regression, we would have

E [θn+1 − θ|Fn] = θn − θ − 1
n + 1

∇2G(θ)−1∇2G(θ) (θn − θ) =

(
1− 1

n + 1

)
(θn − θ) .

Nevertheless, since we do generally not know the Hessian of G at m (and less access the inverse),
one should replace it by a recursive estimate. We will see all along this chapter how to build such
estimates as well as their inverse, and so, with reduced computational costs.
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3.3 The stochastic Newton algorithm

3.3.1 Definition

In what follows, let us denote H := ∇2G(m) and suppose that Assumption (A2) holds. The
Stochastic Newton algorithm (SN for short) is defined recursively for all n ≥ 0 by [BGB20]

m̃n+1 = m̃n −
1

n + 1 + c′γ
H−1

n ∇hg (Xn+1, m̃n) (3.1)

with m̃0 bounded and c′γ ≥ 0. Furthermore, H−1
n is a recursive estimate of H−1, symmetric and

positive, and suppose that there is a filtration (Fn) satisfying

• H−1
n and m̃n are Fn-measurable.

• Xn+1 is independent from Fn.

Note that if we consider the filtration generated by the sample, if H−1
n only depends on X1, . . . , Xn

and m̃0, . . . , m̃n, the hypothesis on the filtration are so verified. We will see in Section 3.3.5 how to
build such recursive estimates as well as their inverse for several examples.

3.3.2 Strong consistency

In order to obtain the almost sure rate of convergence, let us suppose from now that the recursive
estimates of the Hessian verify the following assumption:

(H1) One can control the eigenvalues of Hn: there is β ∈ (0, 1/2) such that

λmax
(

Hn
)
= O(1) a.s. and λmax

(
H−1

n

)
= O

(
nβ
)

a.s.

This assumption implies that, without knowing if m̃n converges, we are able to control the behavior
of the smallest and largest eigenvalue of Hn. Indeed, (H1) implies that lim inf λmin

(
Hn
)
> 0 a.s.

We will see in Section 3.3.5 how to modify natural recursive estimates of the Hessian in order to get
new estimates satisfying this assumption. We can now give the strong consistency of the stochastic
Newton estimates.

Theorem 3.3.1 ([BGB20]). Suppose Assumptions (A1a’), (A2), (A3b) and (H1) hold. Then

m̃n
a.s−−−−→

n→+∞
m.
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Sketch of the proof. A Taylor’s expansion of the functional G coupled with Assumptions (A2)
and (A3b) leads to

E [Vn+1|Fn] ≤
(

1 +
C̃2L∇G

2
1

(n + 1)2

∥∥∥H−1
n

∥∥∥2

op

)
Vn −

1
n + 1

λmin

(
H−1

n

)
‖∇G (m̃n)‖2

+
C̃1L∇G

2
1

(n + 1)2

∥∥∥H−1
n

∥∥∥2

op

with Vn = G (m̃n)− G(m). Thanks to Assumption (H1), one has ∑n≥0
1

(n+1)2

∥∥∥H−1
n

∥∥∥2

op
< +∞ a.s,

and applying Robbins-Siegmund theorem, it comes that Vn converges almost surely to a finite
random variable. In addition ∑n≥0

1
n+1 λmin

(
H−1

n

)
‖∇G (m̃n)‖2 < +∞ a.s and one can conclude

with the help of Assumption (H1). Remark that Assumption (H1) is purely theoretical and is only
necessary to apply Robbins-Siegmund theorem. A possibility to avoid it could be to find a better
Lyapunov function, which is, as far as we now, an open question.

3.3.3 Almost sure rate of convergence

In order to get the rate of convergence of the estimates, we unfortunately need the strong consis-
tency of the estimates of the Hessian. In this aim, let suppose that the following assumption is
fulfilled:

(H2) The estimate Hn converges almost surely to H.

This assumption is satisfied since having the almost sure convergence of the estimates m̃n leads
to have the strong consistency of the estimates of the Hessian. We will see in Section 3.3.5 how
to verify such hypothesis. We can now give the rate of convergence of the stochastic Newton
estimates.

Theorem 3.3.2 ([BGB20]). Suppose Assumptions (A1a’), (A2), (A3b), (H1) and (H2) hold. Then, for all
δ > 0,

‖m̃n −m‖2 = o
(
(ln n)1+δ

n

)
a.s.

Furthermore, if there exists p > 1 such that Assumption (A1p) is fulfilled and if Assumption (A5a) holds,

‖m̃n −m‖2 = O
(

ln n
n

)
a.s.

Sketch of the proof. First, remark that one can rewrite stochastic Newton algorithm as

m̃n+1 −m = m̃n −m− 1
n + 1

H−1
n ∇G (m̃n) +

1
n + 1

H−1
n ξ̃n+1, (3.2)
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with ξ̃n+1 := ∇hg (Xn+1, m̃n) − ∇G (m̃n). Then,
(
ξ̃n
)

is a sequence of martingale differences
adapted to the filtration (Fn). Linearizing the gradient, it comes

m̃n+1 −m = m̃n −m− 1
n + 1

H−1
n H (m̃n −m)− 1

n + 1
H−1

n δ̃n +
1

n + 1
H−1

n ξ̃n+1

where δ̃n := ∇G (m̃n) − H (m̃n −m) is the remainder term in the Taylor’s decomposition of the
gradient. This can also be written as

m̃n+1 −m =

(
1− 1

n + 1

)
(m̃n −m)− 1

n + 1

(
H−1

n − H−1
)

H (m̃n −m)− 1
n + 1

H−1
n δ̃n

+
1

n + 1
H−1

n ξ̃n+1. (3.3)

and by induction, for all n ≥ 1,

m̃n −m = − 1
n

n−1

∑
k=0

(
H−1

k − H−1
)

H (m̃k −m)− 1
n

n−1

∑
k=0

H−1
k δ̃k︸ ︷︷ ︸

=:∆̃n

+
1
n

n−1

∑
k=0

H−1
k ξ̃k+1︸ ︷︷ ︸

=:M̃n

. (3.4)

Then, one can apply a law of large numbers to the martingale term M̃n and prove that ∆̃n is negli-
gible.

3.3.4 Asymptotic efficiency

In order to get the asymptotic efficiency of the stochastic Newton estimates, it is often necessary to
have a first rate of convergence of the estimates of the Hessian. In this aim, we suppose from now
that the following assumption is fulfilled:

(H3) There exists pH > 0 such that

∥∥Hn − H
∥∥2

op = O
(

1
npH

)
a.s.

Remark that this assumption is satisfied since having the almost sure rate of convergence of the
estimates m̃n leads to have a rate of convergence of the estimates of the Hessian. We can now
establish the asymptotic efficiency of the estimates.

Theorem 3.3.3 ([BGB20]). Suppose Assumptions (A1a’), (A2), (A3b), (A4a), (A5a), and (H1) to (H3)
hold. Suppose also that there exists p > 1 such that Assumption (A1p) is fulfilled. Then

√
n (m̃n − θ)

L−−−−→
n→+∞

N
(

0, H−1ΣH−1
)

with Σ = Σ = E
[
∇hg (X, m)∇hg (X, m)T

]
.
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Sketch of the proof. The proof consists in proving that ∆̃n in equation (3.4) is negligible thanks
to Theorem 3.3.2 coupled with Assumption (H3), before applying a Central Limit Theorem to the
martingale term M̃n.

3.3.5 Applications

All the applications given here rely on the use of the Riccati’s formula (also called Sherman-
Morrison formula) for matrix inversion given by(

A + uvT
)−1

= A−1 −
(

1 + vT A−1u
)−1

A−1uvT A−1

where A ∈ Rn×n is invertible, u, v ∈ Rd and 1 + vT A−1u 6= 0.

Application to the linear model

We now focus on the linear model case. Let us recall that the Hessian is defined for all h ∈ Rd by
E
[
XXT] and we suppose from now that it is positive. Then, a natural estimate is defined by

Hn =
1

n + 1

(
n

∑
k=1

XkXT
k + H0

)

where H0 is a matrix chosen positive (one can take H0 = Id for instance). Note that one can rewrite
the sequence

(
Hn
)

recursively as

Hn+1 = Hn +
1

n + 2

(
Xn+1XT

n+1 − Hn

)
.

We now focus on the inversion of Hn. In this aim, let us denote Hn = (n + 1)Hn, i.e one has the
recursive relation

Hn+1 = Hn + Xn+1XT
n+1.

Then, with the help of Ricatti’s formula, one can update the inverse of the Hessian matrix with
only O

(
d2) operations, i.e for all n,

H−1
n+1 = H−1

n −
(

1 + XT
n+1H−1

n Xn+1

)−1
H−1

n Xn+1XT
n+1H−1

n

This leads to the following Stochastic Newton algorithm

θ̃n+1 = θ̃n + H−1
n

(
Yn+1 − θ̃T

n Xn+1

)
Xn+1 (3.5)

H−1
n+1 = H−1

n −
(

1 + XT
n+1H−1

n Xn+1

)−1
H−1

n Xn+1XT
n+1H−1

n .

We can now give the rate of convergence of the estimates, which can be seen as a corollary of
Theorems 3.3.2 and 3.3.3.
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Corollaire 3.3.1 ([BGB20]). Suppose there is p > 0 such that X and ε admit moment of order 4 + 4p and
2 + 2p, and suppose that H := E

[
XXT] is positive. Then, stochastic Newton estimates defined by (3.5)

satisfy

∥∥θ̃n − θ
∥∥2

= O
(

ln n
n

)
a.s. and

√
n
(
θ̃n − θ

) L−−−−→
n→+∞

N
(

0, E
[
ε2]H−1

(LM)

)
.

In Figure 3.2,we consider the linear model with

θ = (−4,−3,−2,−1, 0, 1, 2, 3, 4, 5)T ∈ R10, X ∼ N
(
0, diag

(
σ2

i
))

, ε ∼ N (0, 1) (3.6)

where for all i = 1, . . . , d, σ2
i = i2

d2 . Remark that the largest eigenvalue of the Hessian is so 100
times larger than the smallest one. In Figure 3.2, one can see that gradient estimates do not achieve
convergence, so that their averaged version cannot converge too, and even fewer accelerate the
convergence. On the other hand, one can observe that stochastic Newton estimates converge very
quickly, despite a lack of stability for the first steps. Nevertheless, this can be overcome tuning the
parameter c′γ (chosen equal to 0 here).
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Figure 3.2 – Evolution of the quadratic mean error of the stochastic gradient estimates θn (SGD),
their averaged version θn (ASGD), and the stochastic Newton estimates θ̃n (SN) with respect to the
sample size n in the case of the linear model.

We have already seen that for the averaged estimates, one has

Cn :=
1
σ2 n

(
θn − θ

)T
Hn
(
θn − θ

) L−−−−→
n→+∞

χ2
d,
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and in a same way, Corollary 3.3.1 can be written as

Kn :=
1
σ2 n

(
θ̃n − θ

)T Hn
(
θ̃n − θ

) L−−−−→
n→+∞

χ2
d.

In Figure 3.3, we focus on the distribution functions of Cn and Kn. One can see that even in this
ill-conditioned case, the distribution of Kn is close to the one of the Chi-square law, contrary Cn.
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Figure 3.3 – Comparison of the distribution function of Cn and Kn (with n = 5000) with the
distribution function of a Chi-square law with d degrees of freedom.

Application to logistic regression

We now focus on the estimation of the parameters of the logistic regression. Let us recall that the
Hessian of the function to minimize is defined for all h ∈ Rd by

∇2Glog(h) = E
[
π
(

hTX
) (

1− π
(

hTX
))

XXT
]

,

with π(x) = ex

1+ex . A natural recursive estimate of the Hessian would have been

Sn =
1

n + 1

(
S0 +

n

∑
k=1

π
(

XT
k θ̂k−1

) (
1− π

(
XT

k θ̂k−1

))
XkXT

k

)

with S0 positive. Nevertheless, it is not easy (possible?) to prove that this estimate satisfies As-
sumption (H1). In order to overcome this, we propose [BGBP19] a truncated version, leading to



3.3 The stochastic Newton algorithm 55

the following Stochastic Newton algorithm

αn+1 = π
(

θ̃T
n Xn+1

) (
1− π

(
θ̃T

n Xn+1

))
θ̃n+1 = θ̃n + H−1

n

(
Yn+1 − π

(
θ̃T

n Xn+1

))
Xn+1

H−1
n+1 = H−1

n − an+1

(
1 + an+1XT

n+1H−1
n Xn+1

)−1
H−1

n Xn+1XT
n+1H−1

n

with H0 symmetric and positive, θ̃0 bounded, an+1 = max
{

αn+1, cβ

(n+1)β

}
with cβ > 0 and β ∈

(0, 1/2). Remark that with the help of Riccati’s formula, it comes

(n + 1)Hn := Hn = H0 +
n

∑
k=1

akXkXT
k

The truncation term an enables us to control the smallest eigenvalue of the estimates since, sup-
posing that X admits a second order moment, one has

1

∑n
k=1

cβ

kβ

n

∑
k=1

cβ

kβ
XkXT

k
a.s−−−−→

n→+∞
E
[

XXT
]

Then, supposing that E
[
XXT] is invertible, it comes

λmax

(H0 +
n

∑
k=1

cβ

kβ
XkXT

k

)−1
 = O

(
nβ−1

)
a.s,

i.e Assumption (H1) is satisfied. The following corollary (of Theorems 3.3.2 and 3.3.3) gives the
rates of convergence of the truncated Stochastic Newton algorithm.

Corollaire 3.3.2 ([BGBP19]). Suppose X admits a second order moment and that H := ∇2G(θ) is invert-
ible. Then θ̃n converges almost surely to θ. Furthermore, if X admits a moment of order 4,

∥∥θ̃n − θ
∥∥2

= O
(

ln n
n

)
a.s. and

√
n
(
θ̃n − θ

) L−−−−→
n→+∞

N
(

0, H−1
(log)

)
.

We now consider the model

θ = (1, . . . , 1)T ∈ R5 and X ∼ N
(
0, diag

(
σ2

i
))

where for all i = 1, . . . , d, σ2
i = i2

d2 . One can observe in Figure 3.4 that here again, estimates of the
gradient do not achieve convergence while Stochastic Newton estimates converge very quickly,
even with an Hessian with a complicated structure. Note that under assumptions, Hn converges
almost surely to H, and it can be derived from Corollary 3.3.2 that

Kn := n
(
θ̃n − θ

)T Hn
(
θ̃n − θ

) L−−−−→
n→+∞

χ2
d.
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Figure 3.4 – Evolution of the quadratic mean error of the stochastic gradient estimates θn (SGD),
their averaged version θn (ASGD), and the stochastic Newton estimates θ̃n (SN) with respect to the
sample size n in the case of the logistic regression.

In Figure 3.5, we focus on the distribution functions of Kn (remark that as for the linear case, ASGD
estimates do not converge at all, so that we only focus here on the behavior of Kn). One can see
that even in this ill-conditioned case, the distribution of Kn is close to the one of the Chi-square
law, and is surprisingly outperforming.
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Figure 3.5 – Comparison of the distribution function of Kn (with n = 5000) with the distribution
function of a Chi-square law with d degrees of freedom.
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3.4 The Weighted Averaged Stochastic Newton algorithm

3.4.1 Definition

We have seen in the previous section that considering stochastic Newton algorithms can be helpful
in the case where the problem is ill-conditioned. In addition, we have chosen a step sequence of
the form 1

n+1 , which enables us to obtain asymptotically efficient estimates. Nevertheless, this
can generate troubles in case of bad initialization, since it does not enable the estimates to "move"
quickly [CGBP20]. In order to overcome this, the aim was first to propose an averaged stochastic
Newton algorithm, which consists in using a step sequence of the form 1

(n+1)γ to "move" faster,
before using an averaging step to maintain the asymptotic efficiency. Nevertheless, averaging
is known to be sensitive to a bad initialization and cannot be entirely considered to solve this
problem. An alternative way is to consider a Weighted averaged version (WASNA), which consists
in giving more weight to the last estimates in the averaging step, leading to the following recursive
algorithm: for all n ≥ 0,

m̂n+1 = m̂n − γn+1S−1
n ∇hg (Xn+1, m̂n) (3.7)

mn+1,τ = (1− τn+1)mn,τ + τn+1m̂n+1, (3.8)

given mτ,0 = m̂0, γn = cγ

(
n + c′γ

)−γ with cγ > 0, c′γ ≥ 0 and γ ∈ (1/2, 1). Furthermore S−1
n is a

recursive estimates of H−1 symmetric and positive such that there is a filtration (Fn) verifying that
S−1

n and m̂n are Fn-measurable and Xn+1 is independent from Fn. Finally, the weighted averaging
sequence (τn) should satisfy:

• (τn) is GS(−1) (see [MP11]), i.e

n
(

1− τn−1

τn

)
−−−−→
n→+∞

−1

• There is a constant τ > 1/2 such that

nτn −−−−→
n→+∞

τ.

As mentioned before, by choosing different sequences (τn)n, one can play more or less on the
strength given to the last iterates of m̂n. For instance, choosing τn = 1

n+1 leads to the Averaged
Stochastic Newton algorithm (ASN for short), i.e

mn,0 =
1

n + 1

n

∑
k=0

m̂k.

Considering a sequence τn = (n+1)ω

∑n
k=0(k+1)ω enables to give much more weights to the last estimates,
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and more precisely, this leads to

mn,ω =
1

∑n
k=0(k + 1)ω

n

∑
k=0

(k + 1)ωm̂k

Nevertheless, we will see later that this strategy, although it limited the effect of a bad initialization,
generates a loss of efficiency. Then, a good trade-off is to consider a weighted averaging sequence
of the form τn = log(n+1)ω

∑n
k=0 log(k+1)ω , with ω > 0, which leads to

mn,log,ω =
1

∑n
k=0 log(k + 1)ω

n

∑
k=0

log(k + 1)ωm̂k.

3.4.2 Almost sure rate of convergence

In this section, we focus on the almost sure rate of convergence of the WASNA. In this aim, we
first introduce a first assumption which enables to control the behavior of the eigenvalues of S−1

n ,
which is a derivative of Assumption (H1).

(H1’) One can control the eigenvalues of S−1
n : there exists β ∈ (0, γ− 1/2) such that

λmax
(
Sn
)
= O(1) a.s and λmax

(
S−1

n

)
= O

(
nβ
)

a.s.

Note that here again, this assumption ensures that lim inf λmin

(
S−1

n

)
> 0 end enables to apply

Robbins-Siegmund Theorem since under (H1’), ∑n≥0 γ2
n+1

∥∥∥S−1
n

∥∥∥2

op
< +∞ a.s, which enables to

prove the consistency of the estimates.

Theorem 3.4.1 ([BGB20]). Suppose Assumptions (A1a’), (A2), (A3b) and (H1)’ hold. Then

m̂n
a.s−−−−→

n→+∞
m and mn,τ

a.s−−−−→
n→+∞

m.

Sketch of the proof: The Taylor’s decomposition of Vn+1 := G (m̂n+1)− G(m) leads to

E [Vn+1|Fn] ≤
(

1 +
C̃2L∇G

2
γ2

n+1

∥∥∥S−1
n

∥∥∥2

op

)
Vn−γn+1λmin

(
S−1

n

)
‖∇G (m̂n)‖2 +

C̃1L∇G

2
γ2

n+1

∥∥∥S−1
n

∥∥∥2

op

and applying Robbins-Siegmund theorem, Vn converges almost surely to a finite random variable
while ∑n≥0 γn+1λmin

(
S−1

n

)
‖∇G (m̂n)‖2 < +∞ a.s and Assumption (H1’) enables to conclude.

As for the Stochastic Newton algorithm, we now have to suppose that Sn converges in order to
get the rate of convergence of the WASNA. More precisely, we suppose from now the following
assumption is fulfilled:

(H2’) The estimate Sn converges almost surely to H.
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This hypothesis just means that obtaining the almost sure convergence of the WASNA estimates
leads to to the strong consistency of the estimates of the Hessian, and enables to prove the follow-
ing theorem:

Theorem 3.4.2 ([BGB20]). Suppose Assumptions (A1η), (A2), (A3b), (H1’) and (H2’) hold. Then,

‖m̂n −m‖2 = O
(

ln n
nγ

)
a.s.

Then, we obtain the usual rate of convergence 1
nγ (up to the log term) for this kind of step sequence,

and so, with weak assumptions.

Sketch of the proof. Remark that one can rewrite the algorithm as

m̂n+1 −m = m̂n −m− γn+1S−1
n ∇G (m̂n) + γn+1S−1

n ξ̂n+1 (3.9)

where ξ̂n+1 := ∇G (m̂n)−∇hg (Xn+1, m̂n) is a martingale difference for the filtration (Fn). Fur-
thermore, linearizing the gradient, it comes

m̂n+1 −m = m̂n −m− γn+1S−1
n H (m̂n −m) + γn+1S−1

n ξ̂n+1 − γn+1S−1
n δ̂n

where δ̂n := ∇G (m̂n)− H (m̂n −m) is the rest term in the Taylor’s decomposition of the gradient.
Introducing H−1, it comes

m̂n+1 −m = (1− γn+1) (m̂n −m) +
(

H−1 − S−1
n

)
(m̂n −m) + γn+1S−1

n ξ̂n+1 − γn+1S−1
n δ̂n. (3.10)

Then, with the help of an induction, one can prove that

m̂n −m = β̂n,0 (m̂0 −m) +
n−1

∑
k=0

β̂n,k+1γk+1

(
H−1 − S−1

k

)
(m̂k −m) +

n−1

∑
k=0

β̂n,k+1γk+1S−1
k ξ̂k+1 (3.11)

−
n−1

∑
k=0

βn,k+1γk+1S−1
k δ̂k

with β̂n,n = 1 and β̂n,k = ∏n
j=k+1

(
1− γj

)
. Then, one can easily prove that the first term on the

right hand side of previous equality converges exponentially fast, before applying Theorem 6.1 in
[CGBP20] to the third one and prove that the other ones converge at least at the same rate as the
third one.

Remark 3.4.1. Remark that equality (3.11) represents an important difference with the usual stochastic
gradient algorithm. Indeed, in the case of the gradient, one has an analogous equality but with βn,k =

∏n
j=k+1

(
1− γjH

)
. For a fixed k, this term converges exponentially fast to 0 and more precisely at a rate

O
(

e−
λmin
1−α cγn1−α

)
but this convergence only begins when λmax(H)γk ≤ 1. Then, one could take cγ close to
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λ−1
max to begin to converge quickly but this would lead to a convergence of order O

(
e−

1
1−α

λmin
λmax n1−α

)
which

is a bad convergence when the eigenvalues of H are at very different scales or when n is not large enough.
On the contrary, one could take cγ large to accelerate the convergence, but it would mean that it could spend
a lot of time before this term starts converging. This seems to confirm that having 1− γn enables to take cγ

close to one and quickly converge whatever happens with the eigenvalues of H.

In order to obtain the rate of convergence of its weighted averaged version, let us now introduce a
last assumption, which is a derivative of (H3).

(H3’) There is a positive constant pS > 1
2 −

γ
2 such that

∥∥∥S−1
n − H−1

∥∥∥2
= O

(
1

npS

)
a.s.

In other words, this assumptions means that obtaining the rate of convergence of the stochastic
Newton estimates with stepsequence γn leads to obtain a rate of convergence for the estimates
of the Hessian of order at least 1−γ

2 < 1
4 . We can now give the rate of convergence of WASNA

estimates.

Theorem 3.4.3 ([BGB20]). Suppose Assumptions (A1η), (A2), (A3b), (A4a), (A5a) and (H1’) to (H3’)
hold. Then,

‖mn,τ −m‖2 = O
(

ln n
n

)
a.s.

We so achieve the usual rate of convergence, and so, choosing any stepsequence τn verifying our
assumptions.

Sketch of the proof. First, with the help of an induction, one can rewrite mτ,n as

mn,τ −m = κn,0 (mn,τ −m) +
n−1

∑
k=0

κn,k+1τk+1 (m̂k −m)

with κn,n = 1 and κn,k = ∏n
i=k+1 (1− τi). Furthermore, let us remark that as for averaged gradient

algorithms, one can rewrite equality (3.10) as

m̂k −m =
m̂k − m̂k+1

γk+1
+
(

H−1 − S−1
n

)
(m̂k −m) + S−1

k ξ̂k+1 − S−1
k δ̂k

Multiplying these equalities by κ−1
k+1,0τk+1, and summing it, one has

n−1

∑
k=0

τk+1 (m̂k −m) =
n−1

∑
k=0

κ−1
k+1,0τk+1

m̂k − m̂k+1

γk+1
+

n−1

∑
k=0

κ−1
k+1,0τk+1

(
H−1 − S−1

n

)
(m̂k −m)

+
n−1

∑
k=0

κ−1
k+1,0τk+1S−1

k ξ̂k+1 −
n−1

∑
k=0

κ−1
k+1,0τk+1S−1

k δ̂k.
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Adding m̂0 −m and multiplying by κn,0, it comes

mn,τ −m = κn,0 (m̂0 −m) +
n−1

∑
k=0

κn,k+1τk+1
m̂k − m̂k+1

γk+1
+

n−1

∑
k=0

κn,k+1τk+1

(
H−1 − S−1

n

)
(m̂k −m)

+
n−1

∑
k=0

κn,k+1τk+1S−1
k ξ̂k+1 −

n−1

∑
k=0

κn,k+1τk+1S−1
k δ̂k (3.12)

Then, one has to apply a law of large numbers to the fourth term on the right-hand side of previous
equality before proving that the other ones are negligible (with the help of Theorem 3.4.2 and
Assumption (H3’)).

3.4.3 Asymptotic normality

We now focus on the asymptotic normality of WASNA estimates.

Theorem 3.4.4. [[BGB20]] Suppose Assumptions (A1η), (A2), (A3b), (A4a), (A5a) and (H1’) to (H3’)
hold. Then,

√
n (mn,τ −m)

L−−−−→
n→+∞

N
(

0,
τ2

2τ − 1
H−1ΣH−1

)
.

with Σ := E
[
∇hg (X, m)∇hg (X, m)T

]
.

In order to prove this results, one just has to apply a Central Limit Theorem for martingales to the
fourth term on the right-hand side of equality (3.12). Note that in the case where τn = 1

n+1 , i.e for
the usual averaging, one has τ = 1, i.e the averaged stochastic Newton algorithm is asymptotically
efficient: √

n (mn,0 −m)
L−−−−→

n→+∞
N
(

0, H−1ΣH−1
)

.

Nevertheless, if one chooses τn = (n+1)ω

∑n
k=0(k+1)ω with ω > 0, one has τ = ω + 1, leading to

√
n (mn,ω −m)

L−−−−→
n→+∞

N
(

0,
(1 + ω)2

2ω + 1
H−1ΣH−1

)
.

and since (1+ω)2

2ω+1 > 1, the estimates are not asymptotically efficient. Finally, if one chooses τn =
log(n+1)ω

∑n
k=0 log(k+1)ω , the weighted averaged estimates are asymptotically efficient, i.e

√
n
(
mn,log,ω −m

) L−−−−→
n→+∞

N
(

0, H−1ΣH−1
)

.

Note that in most of cases, Assumption (H3’) can be easily verified and one can so apply Theorem
3.4.4. Nevertheless, we now propose a way to by-pass this assumption in the case where the
estimates of the Hessian have a particular form (when we are able to use Riccati’s formula).
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Theorem 3.4.5 ([BGB20]). Suppose that the Hessian estimates
(
Sn
)

are of the form

Sn =
1

n + 1

(
S0 +

n

∑
k=1

ûkΦ̂kΦ̂T
k +

n

∑
k=1

cβ

kβ
ZkZT

k

)

with S0 symmetric and positive, cβ ≥ 0 and β ∈ (0, γ − 1/2), (Zk)k are standard Gaussian vectors in
dimension d,

ûk = uk (Xk, mτ,k−1) ∈ R, and Φ̂k = Φk (Xk, mτ,k−1) ∈ Rd.

Furthermore, assume that

• for all δ > 0, there is a positive constant Cδ such that for all k,

E
[∥∥∥ûkΦ̂kΦ̂T

k

∥∥∥ 1{‖mτ,k−1−m‖≤(ln k)1/2+δ√γk}|Fk−1

]
≤ Cδ

• There is α ∈ (1/2, 1) and δ > 0 such that

∑
k≥0

(k + 1)2α
τ2

k+1

γk+1

(ln(k + 1))1+δ

(k + 1)2 E

[∥∥∥ûkΦ̂kΦ̂T
k

∥∥∥2
1{‖mτ,k−1−m‖≤(ln k)1/2+δ√γk}|Fk−1

]
< +∞.

Let us also suppose that Assumptions (A1η), (A2), (A3b), (A4a), (A5a), (H1’) and (H2’) hold. Then

‖mn,τ −m‖2 = O
(

ln n
nγ

)
a.s and

√
n (mn,τ −m)

L−−−−→
n→+∞

N
(

0,
τ2

2τ − 1
H−1ΣH−1

)
.

Remark that usually, to prove that Assumption (H3’) is fulfilled, one has to prove that the func-
tional

h 7−→ E
[
uk (Xk, h)Φk (Xk, h)Φk (Xk, h)T

]
is Lipschitz on a neighborhood of m. Previous theorem enables to obtain the convergence replacing
this by, for instance, if α ≤ 3−γ

2 , one can "just" prove that the functional

h 7−→ E

[∥∥∥uk (Xk, h)Φk (Xk, h)Φk (Xk, h)T
∥∥∥2

1{‖h−m‖≤(ln k)1/2+δ√γk}|Fk−1

]
is uniformly bounded.

3.4.4 Applications and comparison with other methods

Simulation scheme

In this section, we assess the numerical performance of the weighted stochastic Newton algorithm
and compare it to that of second-order online algorithms:

• the stochastic Newton algorithm (SN) defined in (3.1) with a step in 1/n, similar to the one
studied in [BGBP19] specifically for the logistic regression;
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• the stochastic Newton algorithm (SN) defined in (3.7) with a step in n−3/4;

• the averaged stochastic Newton algorithm (SNA) given in (3.8), with standard weighting
(τn = 1/(n + 1));

• the weighted averaged stochastic Newton algorithm (WASNA) given in (3.8) with logarith-
mic weighting (τn = log(n+1)ω

∑n
k=0 log(k+1)ω and ω = 2);

with first-order online methods:

• the stochastic gradient algorithm (SGD) with step n−3/4;

• the averaged Stochastic Gradient Algorithm (ASGD);

and finally with first-order online algorithms mimicking second-order ones:

• the Adagrad algorithm [DHS11], which uses adaptive step sizes using only first-order infor-
mation,

• the averaged Adagrad algorithm, with standard weighting.

We illustrate their performance in two different learning tasks, the case of linear and logistic re-
gressions, for simple and more complex structured input data.

Application to the linear model

Let us recall that a natural estimate of the Hessian is defined by

Hn =
1

n + 1

(
n

∑
k=1

XkXT
k + H0

)

where H0 is a matrix chosen positive and can update it recursively with the help of Riccati’s for-
mula. Then, the Weighted Stochastic Newton algorithm is defined by

θ̂n+1 = θ̂n + γn+1(n + 1)H−1
n

(
Yn+1 − θ̃T

n Xn+1

)
Xn+1 (3.13)

θn+1,τ = (1− τn+1) θn,τ + θ̂n+1 (3.14)

H−1
n+1 = H−1

n −
(

1 + XT
n+1H−1

n Xn+1

)−1
H−1

n Xn+1XT
n+1H−1

n .

One can now obtain the rate of convergence of the estimates, which can be seen as a corollary of
Theorems 3.4.2, 3.4.3 and 3.4.4.

Corollaire 3.4.1 ([BGB20]). Suppose there is p > 0 such that X and ε moment of order 4+ 4p and 2+ 2p,
and suppose that H := E

[
XXT] is positive. Then, WASNA estimates defined by (3.13) and (3.14) satisfy

∥∥θ̂n − θ
∥∥2

= O
(

ln n
nγ

)
a.s. and ‖θn,τ − θ‖2 = O

(
ln n

n

)
a.s.
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Furthermore,
√

n (θn,τ − θ)
L−−−−→

n→+∞
N
(

0,
τ2

2τ − 1
E
[
ε2]H−1

(LM)

)
.

We now consider the model given by (3.6). Let us recall that that in such a case the Hessian
associated to this model is equal to diag

(
i2

d2

)
i=1,...,10

, meaning that the largest eigenvalue is 100

times larger than the smallest one. Therefore, considering stochastic gradient estimates leads to a
step sequence which cannot be adapted to each direction. In Figure 3.6, we monitor the quadratic
mean error of the different estimates, for three different type of initializations. One can see that
both averaged Newton methods and the stochastic Newton method with step size of the order 1/n
outperform all the other algorithms, specially for far intializations (right). The faster convergence
of Newton methods or of the Adagrad algorithm compared to the one of standard SGD can be
explained by their ability to manage the diagonal structure of the Hessian matrix, with eigenvalues
at different scales.
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Figure 3.6 – Quadratic mean error of the estimates with respect to the sample size for different
initializations: θ0 = θ + rU, where U is a uniform random variable on the unit sphere of Rd with
r = 1 (left), r = 2 (middle) or r = 5 (right).

Consider now a more complex covariance structure of the data, such as follows

X ∼ N
(

0, Adiag
(

i2

d2

)
i=1,...,d

AT

)

where A is a random orthogonal matrix. This particular choice of the covariates distribution, by
the action of A, allows to consider strong correlations between the coordinates of X. In Figure 3.7,
one can notice that the choice of adaptive step size used in the Adagrad algorithm is no longer
sufficient to give the best convergence result in the presence of highly correlated data. In such
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a case, both averaged Newton algorithms remarkably perform, showing their ability to handle
complex second-order structure of the data, and all the more so for bad initializations (right).
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Figure 3.7 – Quadratic mean error of the estimates with respect to the sample size for different
initializations: θ0 = θ + rU, where U is a uniform random variable on the unit sphere of Rd with
r = 1 (left), r = 2 (middle) or r = 5 (right).

Logistic regression

We now focus on the estimation of the parameter of the logistic regression. The Weighted Stochas-
tic Newton algorithm can be written as

αn+1 = π
(

θT
n,τXn+1

) (
1− π

(
θT

n,τXn+1

))
θ̂n+1 = θ̂n + γn+1S−1

n

(
Yn+1 − π

(
θ̂T

n Xn+1

))
Xn+1 (3.15)

θn+1,τ (1− τn+1) θn,τ + τn+1θ̂n+1 (3.16)

S−1
n+1 = S−1

n − an+1

(
1 + an+1XT

n+1S−1
n Xn+1

)−1
S−1

n Xn+1XT
n+1S−1

n

with S0 symmetric and positive, θτ,0 = θ̂0 bounded, an+1 = max
{

αn+1, cβ

(n+1)β

}
with cβ > 0 and

β ∈ (0, γ− 1/2). Remark that with the help of Riccati formula, it comes

(n + 1)Sn := Sn = S0 +
n

∑
k=1

akXkXT
k

and the truncation so ensures that Assumption (H1’) is verified. Remark that we inject the weighted
averaged estimates in the estimates of the Hessian. The following corollary (of Theorems 3.4.2,
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3.4.3 and 3.4.4. ) gives the rates of convergence of the Weighted truncated Stochastic Newton
algorithm.

Corollaire 3.4.2 ([BGBP19]). Suppose X admits a fourth order moment and that H(log) := ∇2Glog(θ) is
invertible. Then, WASNA estimates defined by (3.15) and (3.16) satisfy

∥∥θ̂n − θ
∥∥2

= O
(

ln n
nγ

)
a.s. and ‖θn,τ − θ‖2 = O

(
ln n

n

)
a.s.

Furthermore,
√

n (θn,τ − θ)
L−−−−→

n→+∞
N
(

0,
τ2

2τ − 1
H−1

(log)

)
.

We consider the setting given in [BGBP19] where θ = (9, 0, 3, 9, 4, 9, 15, 0, 7, 1, 0)T ∈ R11, with
an intercept and standard Gaussian input variables, i.e X =

(
1, ΦT)T with Φ ∼ N (0, I10). In

Figure 3.8, we display the evolution of the quadratic mean error of the different estimates, for three
different initializations. The Newton methods converge faster, in terms of distance to the optimum,
than online gradient descents, which can be again explained by the Hessian structure of the model:
even if the features are standard Gaussian random variables, the non-linearity introduced by the
logistic model leads to a covariance structure difficult to apprehend theoretically and numerically
by first-order online algorithms. One can see that in case of bad initialization, the step choice for
the non-averaged Newton algorithm is crucial: choosing a step sequence of the form 1/n slows
down the optimization dynamics, whereas a step choice n−3/4) allows to reach the optimum much
more quickly.
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Figure 3.8 – Quadratic mean error of the estimates with respect to the sample size for different
initializations: θ0 = θ + rU, where U is a uniform random variable on the unit sphere of Rd with
r = 1 (left), r = 2 (middle) or r = 5 (right).
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3.4.5 Application to Softmax regression

Let us introduce the Softmax regression model. In this aim, let K be a positive integer larger than
1 and let us consider a couple of random variables (X, Y) lying in Rd × {1, . . . , K} verifying for all
k = 1, . . . , K,

P [Y = k|X] =
eθT

k X

∑K
k′=1 eθT

k′X

where θ1, . . . , θK ∈ Rd. In what follows, we denote θ :=
(
θT

1 , . . . , θT
K
)T. Considering independent

couples of random variables (X1, Y1) , . . . , (Xn, Yn) with the same law as (X, Y), the log-likelihood
is defined by

ln(θ) =
n

∑
i=1

log

(
eθT

Yi
Xi

∑K
k=1 eθT

k Xi

)
.

Then, considering the asymptotic objective function, the aim is to minimize the convex functional
GS : Rd × . . .×Rd −→ R defined for all h by

GS(h) = −E

[
log

(
ehT

Y X

∑K
k=1 ehT

k X

)]
=: E [gS(X, Y, h)] .

Remark that if X admits a second order moment, the functional GS is differentiable with

∇G(h) = E




X
(

ehT
1 X

∑K
k=1 ehT

k X
− 1Y=1

)
...

X
(

ehT
K X

∑K
k=1 ehT

k X
− 1Y=K

)


 = E [∇hgS(X, Y, h)]

and one can easily check that θ is a zero of the gradient. Note that the functional G is twice con-
tinuously differentiable and in order to provide estimates of the Hessian we can easily recursively
invert, one has to remark that

HS := ∇2GS (θ) = E
[
∇hgS (X, Y, θ)∇hgS (X, Y, θ)T

]
.

We can now define the WASNA estimates for all n ≥ 0 as

Φn+1 = ∇hg (Xn+1, Yn+1, θn,τ)

θ̃n+1 = θ̃n − γn+1S−1
n ∇hg (Xn+1, Yn+1, θn) (3.17)

θn+1,τ = (1− τn+1) θn,τ + τn+1θ̃n+1 (3.18)

S−1
n+ 1

2
= S−1

n −
(

1 + βn+1ZT
n+1S−1

n Zn+1

)−1
βn+1S−1

n Zn+1ZT
n+1S−1

n

S−1
n+1 = S−1

n+ 1
n
−
(

1 + ΦT
n+1S−1

n+ 1
n
Φn+1

)−1
S−1

n+ 1
n
Φn+1ΦT

n+1S−1
n+ 1

n
,
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with Sn = (n + 1)S−1
n , θ0 bounded, S0 symmetric and positive, βn = cβn−β with cβ > 0 and

β ∈ (0, γ− 1/2). Finally, Z1, . . . , Zn, Zn+1, . . . are i.i.d with Z1 ∼ N (0, Id×K). Remark that with the
help of Ricatti’s formula applied twice, one has

Sn =
1

n + 1

n

∑
i=1

ΦiΦ
T
i +

1
n + 1

(
S0 +

n

∑
i=1

βiZiZT
i

)
.

Then, the first term on the right-hand side of previous equality is a natural recursive estimates of
HS while the second term enables to ensure that Assumption (H1’) is fulfilled since by the law of
large numbers it comes

1
∑n

i=1 βi

n

∑
i=1

βiZiZT
i

a.s−−−−→
n→+∞

Id×K.

Remark that one can also consider the trick introduced in [BBGS21], i.e to consider Zi = ei mod d+1

where ej, j = 1, . . . , d are the element of the canonical basis (see also [GBPL22] for more details).
We can now give the rate of convergence of the Newton estimates, which can be seen as a corollary
of Theorems 3.4.2, 3.4.3 and 3.4.4.

Corollaire 3.4.3 ([BGB20]). Suppose X admits a fourth order moment and that HS is invertible. Then

∥∥θ̃n − θ
∥∥2

= O
(

ln n
nγ

)
a.s and ‖θn,τ − θ‖2 = O

(
ln n

n

)
a.s

In addition
√

n (θn,τ − θ)
L−−−−→

n→+∞
N
(

0,
τ2

2τ − 1
H−1

S

)
.

We focus here on the MNIST2 real dataset, in order to illustrate the performance of the WASNA
in a context of multi-label classification. It consists in 70000 pictures of 28 × 28 pixels repre-
senting handwritten digits recast into vectors of dimension 784. The goal is to predict the digit
Y ∈ {0, . . . , 9} represented on each vectorized image X ∈ R784, where each coordinate gives the
contrast (between 0 and 255) of each pixel. This is then a multi-label classification setting with
10 different classes. In a preprocessing step, we normalize the features between 0 and 1 before
applying the softmax regression. More formally, the model can be defined for any k ∈ {0, . . . 9} by

P [Y = k|X] =
eθT

k X

∑9
k=0 eθT

k X

with the parameters θ =
(
θT

0 , . . . , θT
9
)T and the normalized features X ∈ [0, 1]784. Despite the

simplicity of this model which is not really adapted to imaging data, the obtained performances
are noteworthy, even when applied directly on the raw pixels data. The dataset is randomly split
into a training set of size 60000 and a test set of size 10000 and the WASNA is run with default
parameters, i.e. γ = 0.75, cγ = 1, c′γ = 0 and ω = 2 on the training set. The constructed estimates

2http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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of the parameter θ are then used to "read" the digit displayed in pictures of the test set, leading to
an overall performance of 88% accurate predictions. For completeness, and to understand which
digits are mistaken, we provide the resulting confusion matrix in Figure 3.9. Remark that Averaged
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0 1070 9 2 2 2 2 1 26 3

17 4 884 23 12 11 21 16 39 3

5 3 36 897 1 58 2 6 32 20
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Figure 3.9 – (Softmax regression on the MNIST dataset) Confusion matrix for the predictions given
by the default WASNA on a test set of size 10000.

Stochastic gradient algorithms and the Adagrad one leads to analogous (or slightly better) results.
The comparison in terms of accuracy may not be totally fair as the hyperparameters of the WASNA
have not been optimized at all but chosen as default values. This numerical experiment on the
MNIST real dataset proves the proposed WASNA to be a second order online method able to
tackle large-scale data. And if the number of hyperparameters can be a legitimate delicate point
raised by some readers, it should be noted that a default choice however already leads to very
good results on a difficult problem such as the classification of images into 10 classes.
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Chapter 4

Stochastic Streaming Gradient
algorithms

This chapter is based on [GBWW21, GBWW22].
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4.1 Introduction

In previous chapters, we focus on online stochastic approximation based on the estimation of the
gradient obtained with the last data point. Although it was proven that this approach leads to
asymptotically efficient estimates, the studied framework cannot be applied to the case where the
data are not independent and/or identically distributed. In order to overcome this, we now focus
on streaming data.

More precisely, we will focus on the streams to which the data arrives. We will be concerned by
two main cases: constant and varying streaming-batch sizes. Since one of the main application of
this chapter is the estimation of the parameters of chronological series, we will consider from now
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the following notations and problem: the aim is to minimize a function G : Rd −→ R defined for
all h ∈ Rd by

G(h) = E [gt(h)]

where gt : Rd −→ R is a random function [KY03]. Let us consider the sequence of functions (gt)t≥1

and let us suppose from now that they are differentiable and that their gradients are estimates of
the gradient of G. Typically, we will consider data arriving sequentially and by bloc, i.e at time
t ≥ 1, we have to deal with nt ≥ 1 new random functions gt,1, . . . , gt,nt . A simple example would
be to consider the i.i.d case given by (1.1) and considering new i.i.d data Xt,1, . . . , Xt,nt . Then

gt(h) =
1
nt

nt

∑
i=1

g (Xt,i, h) .

Given (gt)t≥1, the Stochastic Streaming Gradient algorithm (SSG for short) is defined recursively
for all t ≥ 0 by

mt+1 = mt − γt+1∇gt+1 (mt) = mt −
γt+1

nt+1

nt+1

∑
i=1
∇gt+1,i (mt) , (4.1)

where ∇gt+1,i(.) denotes the gradient of gt+1,i, and (γt)t≥1 is a decreasing sequence of positive
numbers satisfying the usual hypothesis

∑
t≥1

γ2
t < +∞ and ∑

t≥1
γt = +∞.

Note that in the usual i.i.d setting defined by (1.1), this algorithm can be assimilated to the Stochas-
tic Gradient algorithm where the last gradient has been calculated with the last nt data instead of
the last one (only). Then, one cannot hope obtaining efficient estimates without an averaging step.
In order to define this last one, let us denote from now by Nt the total number of data/functions
dealt with at time t, i.e Nt := ∑t

j=1 nj. Then, the Averaged Stochastic Streaming Gradient algorithm
(ASSG for short) is defined for all t ≥ 0 by

mt+1 =
1

Nt+1

t

∑
j=0

nj+1θj (4.2)

with m0 = 0. This can of course be recursively written as mt+1 = Nt
Nt+1

mt +
nt+1
Nt+1

mt.

In Section 4.2, we concentrate on the i.i.d settings. The aim is to focus on the behavior of the
estimates with respect to the "choice" of streaming-batch sizes (nt)t≥1. The aim is to understand
each kind of batch settings we can deal with, without affecting too much the rate of convergence
in quadratic mean of the SSG and ASSG estimates. With the help of this preliminary work, we
will consider a framework where the data are not supposed to be independent nor identically
distributed in Section 4.3. More precisely, we will prove that under conditions, the ASSG estimates
still achieve the Cramer-Rao bound. The algorithms will be applied to several cases consisting in
time-series [BJRL15, BD09, Ham20] or the estimation of the geometric median [Hal48, Kem87].
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4.2 Rate of convergence of Averaged Stochastic Streaming Gradient al-
gorithms

4.2.1 Framework

In what follows, let us suppose that m lies in a convex and close subset Θ ⊂ Rd. In case of
possible constraints on the parameter space Θ, one can consider the Projected Stochastic Streaming
Gradient algorithm (PSSG for short) defined for all t ≥ 0 by

mt = PΘ

(
mt −

γt+1

nt+1

nt+1

∑
i=1
∇gt,i (mt)

)

where PΘ is the convex projection onto Θ. To shorten notation, let us recall that ∇gt (mt) :=
1
nt

∑nt
i=1∇gt,i (mt). Furthermore, in order to give the rate of convergence of the estimates, we con-

sider the σ-algebra Ft,i = σ (g1,1, . . . , g1,n1 , . . . , gt,1, . . . , gt,i) (with the convention Ft,0 = Ft−1,nt−1)
and we suppose from now that the following assumptions hold:

(Astream0) The functional G is µ quasi-strongly convex on Θ: for all h, h′ ∈ Θ,

G(h) ≥ G(h′) +
〈
∇G(h′), h− h′

〉
+

µ

2

∥∥h− h′
∥∥2

(Astream1) The random functions ∇gt,i are square-integrable and for all h ∈ Θ,

E [∇gt,i(h)] = ∇G(h).

(Astream2) There exists L∇g ≥ 0 such that for all h, h′ ∈ Θ,

E
[∥∥∇gt,i(h)−∇gt,i(h′)

∥∥4 |Ft,i−1

]
≤ L∇g

∥∥h− h′
∥∥4 .

(Astream3) There exists τ > 0 such that
E
[
‖∇gt,i(m)‖4 |Ft,0

]
≤ τ4.

Let us now make some comments on these assumptions. First of all, in order to alleviate nota-
tions, Assumptions (Astream2) and (Astream3) are supposed to be verified for fourth order moments
although moments of order two are sufficient to get the rate of convergence of SSG estimates. Fur-
thermore, note that they imply Assumption (A1η) and (A1b’) (if the gradient of G is Lipschitz)
and are so a bit more restrictive. Nevertheless, these assumptions are often encountered in the
literature (see [BM13] for instance) and are often satisfied in practice.
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4.2.2 Converge of SSG

We first give an uniform bound of the quadratic mean error of the SSG estimates, and so, for any
streaming batch size nt.

Theorem 4.2.1 ([GBWW21]). Suppose Assumptions (Astream0) to (Astream3) and (A3b) hold. Then, for
all t ≥ 1

E
[
‖mt −m‖2

]
≤ e

−µ ∑t
i= t

2
γi

eL2
∇g ∑t

i=1
γ2

i
ni e2L2

∇G ∑t
i=1 1ni>1γ2

i

(
E
[
‖m0 −m‖2

]
+

2τ2

L∇2
g

)
+

2τ2

µ
max
t
2≤i≤t

γi

ni
.

Remark that this theorem holds for any positive and decreasing stepsequence (γt) and streaming
batch size nt. Then, it enables the reader to obtain quickly the rate of convergence of the estimates
by lower and upper bound the stepsequence. Here, we now consider a stepsequence of the form
γt = cγnβ

t t−γ with cγ > 0, β ∈ [0, 1] and γ has to be calibrated to enable the stepsequence to
satisfy the usual conditions. The term nβ

t , allows, when β > 0, to give more weights to the best
estimates of the gradient, i.e to estimates that use more data. The following corollary gives the rate
of convergence of the SSG estimates for constant streaming-batch size, i.e when nt = Cρ ∈N∗.

Corollaire 4.2.1 ([GBWW21]). Suppose Assumptions (Astream0) to (Astream3) and (A3b) hold. Suppose
also that nt = Cρ and γt = cγCβ

ρ t−γ with γ ∈ (1/2, 1). Then, for all t ≥ 1,

E
[
‖mt −m‖2

]
≤ exp

(
− µcγN1−γ

t

21−γC1−γ−β
ρ

)(
E
[
‖m0 −m‖2

]
+

2τ2

L2
∇g

)
πc +

21+γτ2cγ

µC1−γ−β
ρ Nγ

t

(4.3)

with Nt = ∑t
j=1 nj and πc = exp

(
4γc2

γ(2L2
∇g+Cρ1Cρ>1L2

∇G)
(2γ−1)C1−2β

ρ

)
.

Remark that for nt = 1, we have analogous bound to the one in [BM13]. In addition, taking Cρ > 0
and γ+ β > 1 leads to a reduction of the variance (the last term on the right-hand side of inequality
(4.3)) compare to usual results but increases the first term on the right-hand side of inequality (4.3).
Observe that the inverse analysis can be done for γ and β and all the difficulty is to find the good
compromise.

Since in practice, constant streaming-batch size are not realistic, we now consider varying streaming-
batch size, i.e nt = max

{
Cρtρ, 1

}
with Cρ ≥ 1 and ρ ∈ (−1, 1). The case ρ > 0 (resp. ρ < 0)

corresponds to the increasing (resp. decreasing) streaming-batch size. In order to give the rate of
convergence for both cases, let us denote ρ̃ := ρ1ρ≥0.

Corollaire 4.2.2. Suppose Assumptions (Astream0) to (Astream3) and (A3b) hold. Suppose also that γt =

cγnβ
t t−γ where nt = max

{
cρnρ

t , 1
}

, ρ ∈ (−1, 1) and γ− βρ̃ ∈ (1/2, 1). Then, for all t ≥ 1,

E
[
‖mt −m‖2

]
≤ exp

(
− µcγN1−φ

t

2(2+ρ)(1−φ)C1−β−φ
ρ

)(
E
[
‖m0 −m‖2

]
+

2τ2

L2
∇g

)
πν +

21+(2+ρ)φτ2cγ

µC(1−β)1ρ≥0−φ
ρ Nφ

t
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where φ = (1−β)ρ̃+γ
1+ρ̃ and πν = exp

(
4(γ−βρ̃)c2

γC2β
ρ (2L2

∇g+L2
∇G)

2(γ−βρ̃)−1

)
.

Remark that in the case where ρ is negative, γ just has to verify the usual condition, i.e γ ∈ (1/2, 1).
Note also that some choices of γ, β and ρ can eventually improve the usual rate of convergence,
but we will see in next section that this will be to the detriment of the performance of the ASSG
estimates. Finally, observe that these results can be easily adapted to the case where nt is random
with CLtρL ≤ nt ≤ CHtρH where ρL, ρH ∈ (−1, 1) and CL, CH ≥ 1.

4.2.3 Convergence of ASSG

Let us now focus on the rate of convergence of the ASSG estimates. In this aim, let us first introduce
a last assumption:

(A4a”) There is a positive constant L∇2G such that for all h, h′ ∈ Rd,

∥∥∇G(h)−∇2G(h′)
(
h− h′

)∥∥ ≤ L∇2G
∥∥h− h′

∥∥2 .

Note that this assumption is verified since the function h 7−→ ∇2G(h) is L∇2G-Lipschitz, and it can
be seen as an extension of Assumption (A4a’). Let us now give the L4 rate of convergence of the
SSG estimates:

Lemma 4.2.1. Suppose Assumptions (Astream0) to (Astream3) and (A3b), (A4a”) hold. Then, for all t ≥ 1,

E
[
‖mt −m‖4

]
≤ e−µ ∑t

i=t/2 γi

(
E
[
‖m0 −m‖4

]
+

2τ4

L4
∇g

+
4τ4γ1

µL2
∇gn1

)
Π +

32τ4

µ2 max
t
2≤i≤t

γ2
i

n2
i
+

48τ4

µ
max
t
2≤i≤t

γ3
i

n3
i

+
114τ4

n3
i

max
t
2≤i≤t

γ3
i 1ni>1

n2
i

with Π given in [GBWW21].

Let us introduce a last assumption:

(Astream4) There exists a a non-negative self-adjoint matrix Σ such that for all t ≥ 1,

E
[
∇gt,i(h)∇gt,i(h)T|Ft,i−1

]
4 Σ.

We can now give a first convergence result for the ASSG estimates, available for any choice of
streaming-batch or positive decreasing stepsequence verifying the usual assumptions [RM51].

Theorem 4.2.2 ([GBWW21]). Suppose Assumptions (Astream0) to (Astream4), (A3b) and (A4a”) hold.
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Then, for all t ≥ 1,√
E
[
‖mt −m‖2

]
≤ Λ1/2

N1/2
t

+
1

Ntµ

t−1

∑
i=1

∣∣∣∣ni+1

γi+1
− ni

γi

∣∣∣∣√E
[
‖mi −m‖2

]
+

nt

Ntγtµ

√
E
[
‖mt −m‖2

]
+

n1

Ntµ

(
1

γ1
+ L∇g

)√
E
[
‖m0 −m‖2

]
+

L∇g

Ntµ

(
t−1

∑
i=1

ni+1E
[
‖mi −m‖2

])1/2

+
L∇2G
Ntµ

t−1

∑
i=0

ni+1

√
E
[
‖mi −m‖4

]
where Λ = Tr

(
∇2G(m)−1Σ∇2G(m)−1).

As for the SSG estimates, remark that this theorem enables the reader to obtain quickly the rate
of convergence of the estimates by lower and upper bound the stepsequence. We now consider a
stepsequence of the form γt = cγnβ

t t−γ with cγ > 0, β ∈ [0, 1] and γ has to be calibrated to enables
the stepsequence to verify usual conditions. We now give the rates of convergence for the two
considered case: constant streaming-batch size and varying streaming-batch size. Note that since
the bounds given in [GBWW21] are obviously hard to read, we provide here less precise but more
readable bounds.

Corollaire 4.2.3 ([GBWW21]). Suppose Assumptions (Astream0) to (Astream4), (A3b) and (A4a”) hold.
Suppose also that γt = cγnβ

t t−γ where nt = max
{

cρnρ
t , 1
}

, ρ ∈ (−1, 1) and γ− βρ̃ ∈ (1/2, 1). Then,
for all t ≥ 1, √

E
[
‖mt −m‖2

]
≤ Λ1/2

N1/2
t

+ CASSG max
{

N−1+φ/2
t , N−φ

t

}
, (4.4)

where Λ = Tr
(
∇2G(m)−1Σ∇2G(m)−1) and φ = ((1− β)ρ̃+γ)/(1+ ρ̃). The second term in inequality

(4.4) is explicitely given in [GBWW21].

Remark that the case where ρ̃ = 0 corresponds to the constant or decreasing streaming-batch size.
Note that in these cases, the Cramer-Rao bound is achieved and the two main rest terms converge
at the same rate as in [BM13], meaning that considering ASSG does not seems to have a negative
impact on the convergence here. Observe that for increasing streaming-batch sizes, the rest terms
remain negligible as long as φ ∈ (1/2, 1).

4.2.4 Simulations

In this section, we consider independent random variables Xi ∼ N (θ, Id) with θ = (θ1, . . . , θd)
T

and θi taken randomly in the range [−d, d] (and d = 10). Moreover, we set cγ =
√

d and γ = 2/3.
Furthermore, we focus on the estimation of the geometric median of X1 [Hal48, Kem87, CCZ13,
VZ00]. Of course, the function G is not strongly convex, but one can project the estimates on a
compact and convex subset containing θ.
Let us now make some comments on Figure 4.1. First, Figure 4.1a shows the variance reduction
effect on SSG estimates for different constant streaming batches Cρ ∈ {1, 8, 64, 128} with β = 0.
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Nevertheless, too large (constant) streaming batch sizes Cρ hinders the convergence as we make
too few iterations, leading to potential bad practical results for ASSG estimates. These findings
can be extended to Figures 4.1b, to 4.1e. These figures show an increase in decay of the SSG when
the streaming rate ρ increase as mentioned after but Figures 4.1d and 4.1e highlight the fact hat
taking β = 0 for increasing streaming-batch sizes can lead to bad results in practice. In this case,
one could chose the following setting: γ = 2/3 and β = 1/3 for any positive ρ, which seems to be
confirmed by Figure 4.1f.

4.3 Learning from time-dependent streming data

4.3.1 Framework

We no overcome the usual framework where the blocks (gt)t≥1 are independent and where the
gradients ∇gt are unbiased. The aim of this section is to analyze the behavior of the SSG and
ASSG estimates in this non i.i.d case. In this aim, let us consider a modified version of previous
assumptions.

(Astream1’) For all t ≥ 1 and for any h ∈ Θ such that h is Ft,0-measurable, the random variable∇gt(h) is
square-integrable. Furthermore,

E
[
‖E [∇gt(h)|Ft,0]−∇G(h)‖4

]
≤ ν4

t

(
D4

νE
[
‖h−m‖4

]
+ B4

ν

)
for some positive sequence (νt)t≥1 and Dν, Bν ≥ 0.

Note that in the case of i.i.d settings, one has of course Bν = Dν = 0. The constant Bν gives the po-
tential bias of the estimates of the gradient at m, and if it is equal to 0, we will speak about unbiased
or well-specified case. Let us now give an alternative formulation of Assumption (Astream2).

(Astream2’) There exists a positive sequence (κt)t≥1 such that for all h, h′ ∈ Θ and for all t ≥ 1

E
[∥∥∇gt(h)−∇gt(h′)

∥∥4
]
≤ κ4

t E
[∥∥h− h′

∥∥4
]

.

This assumption can be seen as a property of expected smoothness of the gradient of the random
functions gt. Remark that in the i.i.d setting, this assumption is verified with κ4

t = L4
∇gn−2

t . Let us
now give an alternative formulation of Assumption (Astream3).

(Astream3’) There is a positive sequence (τt)t≥1 such that for all t ≥ 1,

E
[
‖∇gt(m)‖4

]
≤ τ4

t .

Remark that in the i.i.d settings, one has τ4
t = τ4n−2

t . Finally, note that for the convergence of SSG,
only moments of order 2 are needed for these assumptions (see [GBWW22]).
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(a) Constant streaming batches, ρ = 0, β = 0 (b) Varying streaming batches, Cρ = 1, β = 0

(c) Varying streaming batches, Cρ = 8, β = 0 (d) Varying streaming batches, Cρ = 64, β = 0

(e) Varying streaming batches, Cρ = 128, β = 0 (f) Varying streaming batches, Cρ = 8, β = 1/3

Figure 4.1 – Geometric median for various data streams nt = Cρtρ.
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4.3.2 Convergence of SSG estimates

Let us now consider a streaming-batch size of the form nt = Cρtρ with Cρ ≥ 1 and ρ ∈ [0, 1) as
well as a stepsequence γt of the form γt = cγnβ

t t−γ with cγ > 0, β ≥ 0 and γ discussed later.
In addition, we suppose from now that the sequences (νt)t≥1 , (κt)t≥1 and (τt)t≥1 are under the
form νt = n−ν

t , κt = Cκt−κ and τt = Cτt−τ where Cκ, Cτ > 0 and κ, τ ∈ [0, 1/2]. Furthermore,
ν = (0,+∞), and considering the i.i.d case leads to take ν→ +∞ or Bν = Dν = 0. Let us now give
the rate of convergence of the SSG estimates.

Theorem 4.3.1 ([GBWW22]). Suppose Assumptions (Astream0) and (Astream1’) to (Astream3’) hold. Sup-
pose also that µν := µ− 1ρ=02DνC−ν

ρ > 0 and γ− ρβ ∈ (1/2, 1). Then, for all t ≥ 0,

E
[
‖mt −m‖2

]
≤ πt +

2
2+6ρν

1+ρ B2
ν

µµνC
2ν

1+ρ
ρ N

2ρν
1+ρ

t

+
2

7+6ρτ
1+ρ C2

τcγ

µνC
2τ−β−γ

1+ρ
ρ N

ρ(2τ−β)+γ
1+ρ

t

,

where πt converges exponentially fast and is defined in Theorem 1 in [GBWW22].

Remark that for the i.i.d case, i.e taking Bν = Dν = 0 and κ = τ = 1/2, this result coincides with
the one given by Corollary 4.2.2. Furthermore, the condition µ− 1ρ=02DνC−ν

ρ > 0 implies that in
case of dependency (i.e if Dν > 0), if the streaming-batch size is constant, i.e if ρ = 0, one has
to take Cρ sufficiently large to ensure the convergence of the SSG estimates. In addition, in the
unbiased case (Bν = 0), supposing that τ = 1/2, one can take γ = 2/3 and β = 1/2 and get a rate
of convergence of order N−γ

t for instance. Finally, in the biased case, one can remark that the term

induced by the bias converges at a rate of order N
− 2ρν

1+ρ

t meaning that we still have convergence for
increasing streaming-batch sizes, i.e if ρ > 0.

4.3.3 Convergence of ASSG estimates

As for the i.i.d case, let us first make an assumption on the variance of the score.

(Astream4’) There is a non-negative self-adjoint operator Σ such that for all t ≥ 1,

n2τ
t E

[
∇gt(m)∇gt(m)T

]
4 Σ + Σt

where Σt is a non-negative symmetric matrix with Tr (Σt) = C′τn−2τ′
t , with C′τ ≥ 0 and

τ′ ∈ (0, 1/2].

Remark that in the i.i.d case, this assumption is verified with τ = 1/2 and C′τ = 0. Furthermore,
in case of short-range dependence, i.e in the case where τ = 1/2, it is possible to achieve the
Cramer-Rao bound. We can now give the rate of convergence of the ASSG estimates.

Theorem 4.3.2 ([GBWW21]). Suppose Assumptions (Astream0),(Astream1′) to (Astream4′) as well as (A3b)
and (A4a”) hold. Suppose also that µν := µ− 1ρ=02DνC−ν

ρ > 0 and γ− βρ ∈ (1/2, 1). Then, for all
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t ≥ 1,

√
E
[
‖mt −m‖2

]
≤Λ1/2

N1/2
t

1{τ=1/2} +
21/2Λ1/2C

1−2τ
2(1+ρ)
ρ

N
1+2ρσ
2(1+ρ)

t

1{τ<1/2} + Rt + 1{Bν 6=0}Ψt, (4.5)

with δ = 1{Bν=0}(ρ(2τ − β) + γ) + 1{Bν 6=0}min{ρ(2τ − β) + γ, 2ρν} and Ψt satisfies

Ψt = O

(
max

{
N
− ρ(τ+ν)

2(1+ρ)

t , N
− 1+ρ(β+ν)−γ

1+ρ

t , N
− 1+2ρν

2(1+ρ)

t , N
− δ/2+ρν

2(1+ρ)

t , N
− 2ρν

1+ρ

t

})
.

Furthermore, Rt and Ψt are explicitely given in [GBWW22].

A first main conclusion is that one can ensure the convexity taking an increasing streaming-batch
size, which is sufficient to ensure the convergence of the estimates. In addition, previous theorem
claims that it is possible to achieve the Cramer-Rao bound, especially for the unbiased cased (i.e
Bν = 0) and if τ = 1/2. Remark that when τ = 1/2, a judicious choice of parameters seems to be
γ = 2/3 and β = 1/3, which leads to a result of the form√

E
[
‖mt −m‖2

]
≤ Λ1/2

N1/2
t

+ O
(

N−2/3
t

)
+ 1Bν 6=0O

(
N
− ρ(1/2+ν)

2(1+ρ)

t

)
.

Then, in case of short-range dependence, i.e for ν large enough, the Cramer-Rao bound is achieved
(up to rest terms) and so, even in the biased case (if ρ > 0).

4.3.4 Applications

Application to time-series

In what follows, we consider real valued time-series (Xs). More precisely, we will focus on four
examples: the AutoRegressive (AR), Moving-Average (MA), AutoRegressive Conditional Het-
eroskedasticity (ARCH) and AR(1)-ARCH(1) models ([BJRL15, BD09, Ham20]). Let us describe
quickly these processes.

AR model. A process (Xs) is called a zero-mean AR(1) process if there exists θ such that Xs =

θXs−1 + εs where εs is a white noise. Remark that in this example, the problem is well specified in
the sense that Bν = 0 (see [GBWW22]).

MA model. An MA(1) process is defined by Xs = εs + φεs−1, with φ ∈ R. We focus here on the
misspecification error of fitting an AR(1) model to a MA(1) process, i.e we focus on the minimiza-
tion of the error

L(θ) = E
[
(Xs − θXs−1)

2
]
= E

[
(εs + φεs−1 − θ (εs−1 + φεs−2))

2
]

.
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Remark that it is a misspecified case, i.e Bν 6= 0.

ARCH model. A process (εs) is called an ARCH(1) process with parameters α0, α1 ifεs = σszs,

σ2
s = α0 + α1ε2

s−1,
(4.6)

where zs is a white noise.

AR(1)-ARCH(1) model. A process (Xs) is called an AR(1)-ARCH(1) process of parameters θ, α0, α1

if 
Xs = θXs−1 + εs,

εs = σszs,

σ2
s = α0 + α1ε2

s−1.

(4.7)

where (zs) is a weak white noise.

Simulations To compare different data streams through the selection of Cρ and ρ, we fix the pa-
rameters Cγ = 1, γ = 2/3, and β = 0. First consider the AR (well- and misspecified) cases in
4.2a,4.2b; these figures show the results for long-range dependent white noise processes. Note that
in this case the traditional stochastic gradient method experiences a large amount of noise initially,
particularly affecting the average estimate period but not its decay rate. Both methods show a
noticeable reduction in variance when Cρ increases although, without surprise, too large stream-
ing batch sizes Cρ may hinder the convergence as this leads to too few iterations. Furthermore,
4.2a,4.2b indicates an improved decay of the SSG methods when the streaming rate ρ is increased.
Conversely, improvements to the ASSG method do not occur as we do not exploit the potential of
using more observations through parameter β, which could accelerate convergence, e.g., see 4.3.4.

In Figures 4.2c,4.2d, the lack of convexity when using small streaming batch sizes Cρ, e.g., the
averaged stochastic gradient estimates (Cρ = 1, ρ = 0) diverges. Remark that the lack of convexity
is expressed through the lack positively of µν, which only larger streaming batch sizes Cρ can
counteract. Figure 4.2d shows that large (Cρ = 64) and non-decreasing (ρ ≥ 0) streaming batches
can converge under difficult settings.

Application to the geometric median

In order to illustrate our method on real-life time-dependent streaming data, we consider some his-
torical hourly weather data1. The dataset contains around five years (roughly 45000 data points) of

1https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data

https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
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(a) AR(1): well-specified case. (b) AR(1): misspecified case.

(c) ARCH(1). (d) AR(1)-ARCH(1).

Figure 4.2 – Simulation of various data streams nt = Cρtρ.

high temporal resolution hourly measurements over various weather attributes, such as tempera-
ture, humidity, and air pressure. These measurements are available for thirty-six cities, i.e., d = 36.
In our study, we consider the hourly temperature measurements, which we filter for monthly and
annual seasonality by subtracting the monthly and annual averages.

We first estimate the geometric median with the help of the Weiszfeld’s algorithm (see [Wei37]
and Section 5.2.4) with a very large number of iterations. Moreover, following the reasoning of
[CCZ13], we set Cγ =

√
d, and let γ = 2/3.

Figure 4.3a shows that it is essential to use a mini-batch Cρ of a certain size to stabilize the optimiza-
tion, i.e., ensure convexity through larger streaming batches Cρ. In addition, to achieve reasonable
convergence, we need to have increasing streaming batches, i.e., positive streaming rates ρ > 0;
this is illustrated in 4.3b and 4.3c. Indeed, these figures leads to think that an increasing ρ leads
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Figure 4.3 – Geometric median for various data streams nt = Cρtρ.

(a) Varying Cρ, ρ = 0, β = 0 (b) Varying ρ, Cρ = 1, β = 0

(c) Varying ρ, Cρ = 64, β = 0 (d) Varying ρ, Cρ = 64, β = 1/3

to a decay of the SSG methods. However, the lack of convergence improvements in 4.3c comes
from β = 0, which means we do not exploit the potential of using more observations to accelerate
convergence. As shown in Figure 4.3d, we can achieve this acceleration by simply taking β = 1/3.
In addition, β = 1/3 provides optimal convergence robust to any streaming rate ρ. As expected,
choosing a proper β > 0 is particularly important when Cρ is large. Most surprising is that we can
achieve excellent convergence with a final error of only 10−5 by combining increasing streaming
batches with averaging, e.g., see 4.3d with Cρ = 64, ρ > 0 and β = 1/3.
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Chapter 5

Application to robust statistics

This chapter is based on [CCGB15, GB16a, CGB15, GBS22, GBR22].
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5.1 Introduction

The acquisition of massive data lying in high dimensional spaces is unfortunately often accompa-
nied by a contamination of these last ones. In this context of contaminated data, even few individu-
als may corrupt simple statistical indicators such as the mean or the variance. Detecting these atyp-
ical data automatically is not straightforward and considering robust techniques is an interesting
alternative [NT15]. There are many robust location indicators [Sma90, GH10, MNO+10, CGP12].
For instance, Trimmed-means [RL05, FM01] consist in taking the averaged of the (1− α)n most
central information. Nevertheless, this approach necessitates to have an idea of the proportion of
contaminated data and assume that these last ones are necessary far from 0. In addition, these
approaches often necessitates high computational efforts, although some procedures have been
developed to deal with dimensionality issues [CFF07].

In this chapter, we first focus on the geometric median (also called L1-median or spatial median)
introduced by [Hal48]. Indeed, this location indicator is known to have a 0.5 breakdown point,
meaning that even if nearly half of the sample is contaminated, one can control the divergence
of the estimates, contrary to the mean which has a 0 breakdown point [Ger08]. Several iterative
methods based on Weiszfeld algorithm [Wei37] have been developped [VZ00]. We focus in Section
5.2 on the online estimates of the median obtained with the help of an averaged stochastic gradient
algorithm [CCZ13]. More precisely, we establish non asymptotic rates of convergence such that the
rates of convergence in quadratic mean as well as confidence balls.

In a second time, we will focus on robust non-supervised clustering. One of the most usual
method for hard clustering is probably the K-means algorithm [For65, Mac67], and one can refer
to [CAGM97, GEG99] for the robust versions obtained with the help of Trimmed K-means. Since
these modified robust version share the same problems as the Trimmed means, we focus in Section
5.3 on K-medians algorithms [Mac67, KR09, CCM12]. More precisely, we propose a method for se-
lecting the number of clusters based on a penalized criterion [Fis11] whose penalty is calibrated
with the help of a slope heuristic [BMM12, AM09]. All the proposed methods are available in the
R package Kmedians accessible on CRAN1.

In section 5.4, we focus on online robust Principal Components Analysis (PCA). PCA is one of
the most useful statistical tools to extract information by reducing the dimension when one has
to analyze large samples of multivariate data [Jol02, RS05]. Nevertheless, principal components,
which are derived from the spectral analysis of the covariance matrix, can be very sensitive to out-
liers and many robust procedures for principal components analysis have been considered in the
literature (see [HRVA08, HR09, Ger08] among others). We focus here on a new approach based
on the Median Covariation Matrix, which is a robust dispersion indicator which has, under condi-
tions [KP12], the same eigenvectors as the usual covariance matrix. All the proposed methods are
available in the R package Gmedian accessible on CRAN2.

Finally, Section 5.5 deals with the case where the law of the sample is known. Indeed, one can so

1https://cran.r-project.org/package=Kmedians
2https://cran.r-project.org/package=Gmedian

https://cran.r-project.org/package=Kmedians
https://cran.r-project.org/package=Gmedian
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rebuild robustly the covariance matrix from the estimates of the MCM [GBR22], and this approach
is so applied to the development of robust methods for model based clustering, such as Gaussian
Mixtures. This represent an interesting alternative to usual robust methods which often necessi-
tates to modelize the contamination ( see [BR93, CH16, CH17, FP20] for instance). All the proposed
methods are available in the R package RGMM accessible on CRAN3.

5.2 Online estimation of the geometric median via averaged stochastic
gradient algorithms

5.2.1 Definition and algorithms

In what follows, we consider a random variable X taking values in a separable Hilbert space H
(not necessarily of finite dimension). Then, the geometric median of X is defined as the minimizer
of the functional G1/2 : H −→ R defined for all h ∈ H by

G1/2(h) = E [‖X− h‖ − ‖X‖] .

Remark that the term ‖X‖ just enables not to make any assumption on the existence of the first
order moment of X. We suppose from now that the following usual assumptions are fulfilled
[Kem87, Cha92, Cha96, CCZ13]:

(Amedian1a) The random variable X is not concentrated around single points: there is a constant Cmed

such that for all h ∈ H,

E

[
1

‖X− h‖

]
≤ Cmed.

(Amedian2) The random variable X is not concentrated on a straight line: for all h ∈ H, there is h′ ∈ H
such that

〈h, h′〉 6= 0 and V [〈X, h〉] > 0.

Remark that Assumption (Amedian1a) is closely related to small ball probabilities and is not restric-
tive since the dimension of H is larger that 3. This assumption is crucial to ensure that for all
h ∈ H, the functional G1/2 is twice continuously differentiable with

∇G1/2(h) = −E

[
X− h
‖X− h‖

]
and ∇2G1/2(h) = E

[
1

‖X− h‖

(
IH −

(X− h)(X− h)T

‖X− h‖2

)]
.

Finally, Assumption (Amedian2) ensures that the functional G1/2 is locally strongly convex on a
neighborhood of the median m1/2, and so ensures its uniqueness [Kem87]. In what follows, let us
consider X1, . . . , Xn, Xn+1, . . . i.i.d copies of X arriving sequentially. Then, the stochastic gradient
algorithm for estimating the geometric median and its averaged version are defined recursively

3https://cran.r-project.org/package=RGMM

https://cran.r-project.org/package=RGMM
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for all n ≥ 0 by [CCZ13]

m1/2,n+1 = m1/2,n + γn+1
Xn+1 −m1/2,n

‖Xn+1 −m1/2,n‖

m1/2,n+1 = m1/2,n +
1

n + 2
(m1/2,n+1 −m1/2,n) (5.1)

with m1/2,0 = m1/2,0 and γn = cγn−γ where cγ > 0 and γ ∈ (1/2, 1).

5.2.2 Rates of convergence

First, note that it was proven in [CCZ13] that under Assumptions (Amedian1a) and (Amedian2),
m1/2,n converges almost surely to m. We now give the almost sure rate of convergence of the
stochastic gradient estimates:

Theorem 5.2.1. Suppose Assumptions (Amedian1a) and (Amedian2) hold. Then,

‖m1/2,n −m1/2‖2 = O
(

ln n
nγ

)
a.s.

Remark that this result represents a slight improvement compare to the one in [GB16a], and it is
a direct corollary of Theorem 1.3.2. In order to obtain the rate of convergence of the averaged
estimates, let us introduce a last assumption:

(Amedian1b) The random variable X is not concentrated around single points: there is a positive constant
Cmed such that for all h ∈ H,

E

[
1

‖X− h‖2

]
≤ C2

med.

Note that thanks to Hölder’s inequality, this implies Assumption (Amedian1a). Furthermore, this
hypothesis is crucial to bound the rest term in the Taylor’s decomposition of the gradient, i.e to
ensure that Assumption (A4a) is fulfilled, and so to prove the following theorem.

Theorem 5.2.2 ([CCZ13, GB16a]). Suppose Assumptions (Amedian1b) and (Amedian2) hold. Then, for all
δ > 0,

‖m1/2,n −m1/2‖ = o
(
(ln n)1+δ

n

)
a.s and

√
n (m1/2,n −m1/2)

L−−−−→
n→+∞

N
(

0, H−1
1/2Σ1/2H−1

1/2

)

where H1/2 = ∇2G1/2 (m1/2) and Σ1/2 = E

[(
X−m1/2
‖X−m1/2‖

) (
X−m1/2
‖X−m1/2‖

)T
]

.

Then, the averaged estimates are unsurprisingly asymptotically efficient.

5.2.3 Non asymptotic rates of convergence

Let us now focus on the rate of convergence in quadratic mean of the estimates. More precisely,
the aim is to apply Theorem 1.5.1. To do so, let us recall two important results. First, under
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assumptions (Amedian1a) and (Amedian2), it was proven in [CCZ13] that there is K large enough
such that

cmin := inf
‖v‖=1

V
[
〈v, X〉 1‖X‖≤K

]
> 0.

Then, one has for all h ∈ B (m1/2, 1) [CCZ13],

λmin
(
∇2G1/2(h)

)
≥ 1

(K + 1)3 cmin.

In addition, it was proven in [GB16a] that under Assumption (Amedian1b),

∥∥∇G1/2(h)−∇2G1/2 (m1/2) (h−m1/2)
∥∥ ≤ C2

med ‖h−m1/2‖2 .

Then, Assumption (A4a’) is fulfilled. Let us now denote λ1/2 := λmin
(
∇2G1/2 (m1/2)

)
and apply

Theorem 1.5.1 to obtain the following rate of convergence for the stochastic gradient estimates of
the median.

Theorem 5.2.3. Suppose Assumptions (Amedian1) and (Amedian2) hold. Then, there are positive constants
A0,med, A1,med and A2,med such that for all n ≥ 1,

E
[
‖m1/2,n −m1/2‖2

]
≤ A0,mede−λ1/2cγn1−γ

+ A1,mede−
(K+1)3

4cminCmed
cγn1−γ

+ A2,medn−2γ +
2γcγ

λ1/2
n−γ.

Note that constants A0,med, A1,med and A2,med are explicitly given in the detailed Theorem A.3.1.
Without any surprise, we achieve the usual rate of convergence n−γ. Observe that Figure 5.1
leads to think that this bound can still be improved. Furthermore, remark that under the same
assumptions, one can apply Theorem 1.5.2 to prove that for any integer p > 0,

E
[
‖m1/2,n −m1/2‖2p

]
= O

(
n−γp) .

This result is of particular interest to obtain the Lp rates of convergence of the averaged estimates,
and by extension, to obtain the rate of convergence of the estimates of the Median Covariation
Matrix. We now give the rate of convergence of the averaged estimates.

Theorem 5.2.4. Suppose Assumptions (Amedian1) and (Amedian2) hold. Then, there are positive constants
Aav,med and Bav,med such that for all n ≥ 1,√

E
[
‖m1/2,n −m1/2‖2

]
≤
√

Tr (H−1Σ1/2H−1)√
n + 1

+
Aav,med

(n + 1)γ
+

2
γ
2 5

√cγλ1/2(n + 1)1− γ
2
+

Bav,med

(n + 1)
1+γ

2

.

Note that constants Aav,med and Bav,med are explicitly given in Theorem A.3.2. The averaged esti-
mates so achieve the Cramer-Rao bound (up to the rest terms), which seems to be confirmed by
Figure 5.2. In addition, observe that under the same assumptions, one can apply Theorem 2.3.3 to
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Figure 5.1 – Comparison of the evolution of the quadratic mean error of estimates m1/2,n (with
respect to the sample size n with γ = 0.66, 0.75) with the main term of the theoretical bound given
by Theorem 5.2.3
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Figure 5.2 – Comparison of the evolution of the quadratic mean error of estimates m1/2,n (with
respect to the sample size n with γ = 0.66, 0.75) with the main term of the theoretical bound given
by Theorem 5.2.3

verify that for any positive integer p,

E
[
‖m1/2,n −m1/2‖2p

]
= O

(
1

np

)
,

which is of particular interest to obtain the rate of convergence in quadratic mean of the estimates
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of the Median Covariation Matrix. We now give non-asymptotic confidence balls of the median.

Theorem 5.2.5 ([CCGB15]). Suppose Assumptions (Amedian1) and (Amedian2) hold. Then, for all δ ∈
(0, 1) there is a rank nδ such that for all n ≥ nδ

P

[
‖m1/2,n −m1/2‖ ≤

4
λ1/2

(
2

3n
+

1√
n

)
ln
(

4
δ

)]
≥ 1− δ.

Remark that the proof of this theorem rely on the application of an exponential inequality [Pin94]
for the martingale term in decomposition (2.2) before finding the rank nδ such that the other terms
of the decomposition are negligible. Then, one can derive constants C1, C2, C3 such that (see the
proof of Theorem 4.2 in [CCGB15])

nδ = max


(

C1

δ log
( 4

δ

)) 2
1−γ

,

(
C2

δ log
( 4

δ

)) 2
2γ−1

,

(
C3

δ log
( 4

δ

)) 1
2
 .

5.2.4 Weiszfeld’s algorithm

In this section, we make same recalls on the Weiszfeld’s algorithm which can be of interest for
robust clustering methods developed in Sections 5.3 and 5.5. First, observe that one can see the
median as a fix point. Indeed, one has

∇G (m1/2) = E

[
X−m1/2

‖X−m1/2‖

]
= 0⇔ m1/2 =

E
[

X
‖X−m1/2‖

]
E
[

1
‖X−m1/2‖

]
Then, considering X1, . . . , Xn with the same law as X, one can use a fix point algorithm with the
empirical function generated by the sample, leading to the following Weiszfeld’s algorithm [Wei37]

m1/2,n,t+1 =
∑n

k=1
Xk

‖Xk−m1/2,n,t‖

∑n
k=1

1
‖Xk−m1/2,n,t‖

. (5.2)

Note that this can be written as

m1/2,n,t+1 = m1/2,n,t +
1

∑n
k=1

1
‖Xk−m1/2,n,t‖

n

∑
k=1

Xk −m1/2,n,t

‖Xk −m1/2,n,t‖
,

i.e Weiszfeld’s algorithm can be seen as an iterative gradient algorithm with a stepsequence ηt =
1

∑n
k=1

1

‖Xk−m1/2,n,t‖
. Furthermore, under Assumptions (Amedian1b) and (Amedian2), one can check that

we have the convergence in law [VZ00]

lim
n,t→+∞

√
n (m1/2,n,t −m1/2) = N

(
0, H−1

1/2Σ1/2H−1
1/2

)
,
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i.e one obtains the same asymptotic normality as for the averaged estimates. Nevertheless, al-
though these estimates can be very performing in case of small samples in small dimensional
spaces, they necessitate much more computational costs for dealing with big data.

5.3 Application to K-medians

This section is based on [GBS22]

5.3.1 Introduction

Clustering is unsupervised machine learning technique which is defined as the algorithm for
grouping the data points into a collection of groups based upon similar features. There is a vast
literature on clustering techniques and general references regarding clustering may be found in
[Spa80, JD88, Mir96, JMF99, Ber06, KR09]. We focus here on hard clustering methods whose most
popular one is the K-means algorithm [For65, Mac67]. More precisely, considering X1, ..., Xn be
random vectors taking values in Rd, the aim of K-means algorithm is to find k centroids {c1, ..., ck}
minimizing the empirical distortion

1
n

n

∑
i=1

min
j=1,..,k

∥∥Xi − cj
∥∥2 . (5.3)

Nevertheless, K-means methods are very sensitive to the presence of outliers. It is then preferable
to focus on K-medians clustering [Mac67, KR09]. This can be seen as a variant of K-means clus-
tering where instead of calculating the mean of each cluster to determine its centroid, we calculate
instead the geometric median. It consists in considering criteria based on least norms instead of
least squared norms. More precisely, considering the same sequence of i.i.d copies X1, ..., Xn, the
objective of K-medians clustering is to minimize the empirical L1-distortion :

1
n

n

∑
i=1

min
j=1,..,k

∥∥Xi − cj
∥∥ ,

i.e the centroids are now the medians of the clusters. Nevertheless, in practical applications, the
number of clusters k is unknown. The aim of this section is to give a method to chose the "op-
timal" number of clusters for robust clustering. Note that several methods for determining the
optimal number of clusters have been studied for K-means algorithms and can be easily adapted
for K-medians. In practice, one of the most used method for determining the optimal number of
clusters is elbow method. Other methods often used are the Silhouette [KR09] and the Gap Statistic
[TWH01].

We propose here a new approach based on a penalized criterion to chose the number of cluster (see
[Fis11] for the case of K-means). More precisely, we introduce a penalty function to avoid choosing
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too large k and a data-driven calibration algorithm [BM07, AM09] is used to find the constant of
this penalty function. All the proposed algorithms are available in the R package Kmedians on
CRAN4.

5.3.2 K-medians algorithms

For a positive integer k, a vector quantizer Q of dimension d and codebook size k is a (measurable)
mapping of the d-dimensional Euclidean Rd into a finite set of points {c1, ..., ck} [Lin00]. More
precisely, the points ci ∈ Rd, i = 1, ..., k are called the codepoints and the vector composed of the
code points {c1, ..., ck} is called codebook, denoted by c. Given a d-dimensional random vector
X admitting a finite first order moment, the L1-distortion of a vector quantizer Q with codebook
c = {c1, ..., ck} is defined by

W(c) := E

[
min

j=1,..,k

∥∥X− cj
∥∥] .

Let us now consider X1, ..., Xn random vectors of Rd i.i.d with the same law as X. Then, one can
define the empirical L1-distortion as :

Wn(c) :=
1
n

n

∑
i=1

min
j=1,..,k

∥∥Xi − cj
∥∥ .

We consider here two kinds of K-medians algorithms : sequential and non sequential algorithm.
The non sequential algorithm uses Lloyd-style iteration which alternates between an expectation
(E) and maximization (M) step and is precisely described in Algorithm 1:

Inputs : D = {x1, ..., xn} datapoints, k number of clusters
Output : A set of k clusters : C1, ..., Ck

Randomly choose k centroids : m1, ..., mk.
while the clusters change do

for 1 ≤ i ≤ n do
r = arg min1≤j≤k

∥∥xi −mj
∥∥

Cr ← xi

end
for 1 ≤ j ≤ k do

mj = arg minm ∑i,xi∈Cj
‖xi −m‖

end

end
Algorithme 1 : Non Sequential K-medians Algorithm .

For 1 ≤ j ≤ k, mj is nothing but the geometric median of the points in the cluster Cj. As mj is not
explicit, we will use Weiszfeld algorithm defined by (5.2) (indicated by "Offline") or the averaged
stochastic gradient algorithm defined by 5.1 (indicated by "Semi-online") to estimate it. The Online

4https://cran.r-project.org/package=Kmedians

https://cran.r-project.org/package=Kmedians
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K-median algorithm proposed by [CCM12] based on an averaged Robbins-Monro procedure is
described in Algorithm 2:

Inputs : D = {x1, ..., xn} datapoints, k number of clusters, cγ > 0 and γ ∈ (1/2, 1)
Output : A set of k clusters : C1, ..., Ck

Randomly choose k centroids : m1, ..., mk.
mj = mj ∀ 1 ≤ j ≤ k
nj = 1 ∀ 1 ≤ j ≤ k
for 1 ≤ i ≤ n do

r = arg min1≤j≤k
∥∥xi −mj

∥∥
Cr ← xi

mr ← mr +
cγ

(nr+1)γ
xi−mr
‖xi−mr‖

mr ← nrmr+mr
nr+1

nr ← nr + 1

end
Algorithme 2 : Online K-medians Algorithm .

5.3.3 Selecting the number of clusters

In this section, we adapt the results that have been shown for K-means in [Fis11] to K-medians
clustering. In this aim, let X1, ..., Xn be i.i.d random vectors with the same law as X, and we assume
that ‖X‖ ≤ R almost surely for some R > 0. Let Sk denote the countable set of all {c1, ..., ck} ∈ Qk,
where Q is some grid over Rd. A codebook ĉk is said empirically optimal codebook if we have
Wn(ĉk) = minc∈Sk Wn(c). In the sequel, let ĉk be a minimizer of the criterion Wn(c) over Sk. Our
aim is to determine k̂ minimizing a criterion of the type

crit(k) = Wn(ĉk) + pen(k)

where pen : {1, ..., n} → R+ is a penalty function described later. The following theorem provides
an uniform upper bound of the difference between the empirical and the L1 distortion.

Theorem 5.3.1 ([GBS22]). Let X a random vector taking values in Rd such that ‖X‖ ≤ R almost surely
for some R > 0. Then for all 1 ≤ k ≤ n,

E

[
sup
c∈Sk

{W(c)−Wn(c)}
]
≤ 48R

√
kd
n

.

This theorem shows that the maximum difference between the L1-distortion and the empirical
distortion of any vector quantizer is of order n−1/2 and enables to give the following upper bound
of the L1-distortion.

Theorem 5.3.2 ([GBS22]). Consider non-negative weights {xk}1≤k≤n such that ∑n
k=1 e−xk = Σ. Suppose
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that ‖X‖ ≤ R almost surely and that for every 1 ≤ k ≤ n

pen(k) ≥ R

(
48

√
kd
n

+ 2
√

xk

2n

)
.

Then

E [W(c̃)] ≤ inf
1≤k≤n

{
inf
c∈Sk

W(c) + pen(k)
}
+ ΣR

√
π

2n

where c̃ = ĉk̂ minimizer of the penalized criterion.

Considering the simple situation where one can take {xk}1≤k≤n such that xk = Lk for some positive
constant L and Σ = ∑n

k=1 e−xk ≤ 1 and taking

pen(k) = R

(
48

√
kd
n

+ 2

√
Lk
2n

)
= R

√
k
n

(
48
√

d + 2

√
L
2

)

we deduce that the penalty shape is a
√

k
n where a is a constant. From Proposition 3.1 in [GBS22],

considering a penalty pen(k) = aR
√

k
n where a ≥

(
48
√

d + 2
√

L
2

)
, we obtain

E [W(c̃)] ≤ R

(
inf

1≤k≤n

{
4k−1/d + a

√
k
n

}
+ Σ

√
π

2n

)
.

Minimizing the term on the right hand side of previous inequality leads to k of order n
d

d+2 and

E [W(c̃)] = O(n−
1

d+2 ).

We now focus on the callibration of the constant a. In this aim, we focus on the data-driven method
introduced by [BM07]: the "slope heuristics". This method consists in estimating the constant
of penalty function by the slope of the expected linear relation of −Wn(ĉk) with respect to the

penalty shape values penshape(k) =
√

k
n . More precisely, denoting c∗ = arg minc∈S W(c) and

ck = arg minc∈Sk W(c) where S any linear subspace of Rd and Sk set of predictors. It was shown in
[BM07, AM09, BMM12] that under conditions, the optimal penalty satisfies for large n

penopt(k) = aoptpenshape(k) ≈ 2(Wn(c∗)−Wn(ĉk)).

This gives
aopt

2
penshape(k)−Wn(c∗) ≈ −Wn(ĉk).

The term−Wn(ĉk) with respect to the penalty shape behaves like a linear function for a large k. The
slope Ŝ of the linear regression of −Wn(ĉk) on penshape(k) is estimated by aopt

2 . Finally, we obtain

pen(k) = 2Ŝpenshape(k).
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5.3.4 Simulations

The studied algorithms are available in the R package Kmedians5. In what follows, the centers ini-
tialization is generated from robust hierarchical clustering algorithm with genieclust6 package
[GBC16].

Visualization of results with the package Kmedians

In Section 5.3.3, we proved that the penalty shape is a
√

k
n where a is a constant to calibrate. To find

the constant a, we will use the data-based calibration algorithm for penalization procedures that
is explained at the end of section 5.3.3. This data-driven slope estimation method is implemented
in CAPUSHE (CAlibrating Penalty Using Slope HEuristics) [BBM+11] which is available in the
R package capushe7. Remark that this proposed slope estimation method has been built to be
robust in order to preserve the eventual undesirable variations of criteria.
In what follows, we consider a random variable X following a Gaussian Mixture Model in R5 with
k = 6 classes and we consider n = 3000 i.i.d realizations of X. We first focus on some visualization
of the slope method.
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Figure 5.3 – Evolution of −Wn(ĉk) with respect to k (on the left), Slope values as function of the
number of points used to estimate the slope (upper right) and selected number of clusters for each
number of points used to estimate the slope (bottom right).

Figure 5.4 (left) shows that there are two possible elbow of this curve so, the elbow method sug-
gests taking 5 or 6 as the number of clusters. In this case, the elbow method is not ideal. In Figures
5.5 and 5.6, in order to visualize data points in dimensions higher than 3, we represent data as

5https://cran.r-project.org/package=Kmedians
6https://cran.r-project.org/package=genieclust
7https://cran.r-project.org/package=capushe

https://cran.r-project.org/package=Kmedians
https://cran.r-project.org/package=genieclust
https://cran.r-project.org/package=capushe
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Figure 5.4 – Evolution of Wn(ĉk) (on the left) and crit(k) (on the right) with respect to k.

curves that we call "profiles", gathered it by cluster, and represented the centers of the groups in
red. We also represent the 2 first principal components of the data using robust PCA (see Section
5.4). In order to visualize the robustness of the proposed method, we consider contaminated data
with the law Z = (Z1, ..., Z5) where Zi are i.i.d, with Zi ∼ T1 where T1 is a Student law with
1 degree of freedom. Applying our method for selecting the number of clusters for K-medians
algorithms, we selected the correct number of clusters and the obtained groups are coherent. Nev-
ertheless, in the case of K-means clustering, the method assimilates some far outliers as single
clusters (see Figure 5.6). Note that in the case of contaminated data (Figures 5.5 and 5.6), we only
represented 95% of the data in order to better visualize them. Then, in Figure, 5.6, Clusters 5, 7, 8,
11 and 12 are not visible since they are "far" outliers.
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Figure 5.5 – Profiles (on the left) and clustering via K-medians algorithm represented on the first
two principal components (on the right) with 5% of contaminated data.
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Figure 5.6 – Profiles (on the left) and clustering via K-means algorithm represented on the first
two principal components (on the right) with 5% of contaminated data.

Comparison with Gap Statistic and Silhouette

In what follows, we focus on the choice of the number of clusters and compare our results with
different methods. For this, we generated some basic data sets in three different scenarios (see
[Fis11]) :
(S1) A single cluster in dimension 10 : We consider 2000 points uniformly distributed over the
unit hypercube in dimension 10.
(S2) 4 clusters in dimension 3 : The data are generated by Gaussian mixture centered at (0, 0, 0),
(0, 2, 3), (3, 0,−1), and (−3,−1, 0) with variance equal to the identity matrix. Each cluster contains
500 data points.
(S3) 5 clusters in dimension 4 : The data are generated by Gaussian mixture centered at (0, 0, 0, 0),
(3, 5,−1, 0), (−5, 0, 0, 0), (1, 1, 6,−2) and (1,−3,−2, 5) with variance equal to the identity matrix.
Each cluster contains 500 data points.

For each scenario, we contaminated our data with the law Z = (Z1, ..., Zd) where Zi are i.i.d, with
Zi ∼ T1. We then evaluate our method for the different methods and scenarios by considering:

• N : number of times we get the right value of cluster in 50 repeated trials without contami-
nated data.

• k̄ : average of number of clusters obtained over 50 trials without contaminated data.

• N0.1 : number of times we get the right value of cluster in 50 repeated trials with 10% of
contaminated data.

• k̄0.1 : average of number of clusters obtained over 50 trials with 10% of contaminated data.

In every scenario, Offline, Semi-Online, Online K-medians with the slope method give very com-
petitive (best) results and in the case where the data are contaminated, they clearly over perform
other methods (especially the Offline method). As expected, in terms of efficiency, we find the
order Offline, Semi-Online, Online since the sample size is moderate, but the Online algorithm is
very competitive and is very cheap in term of computational calculus.
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Simulations S1 S2 S3
Algorithms N k̄ N0.1 k̄0.1 N k̄ N0.1 k̄0.1 N k̄ N0.1 k̄0.1

Sl
op

e
Offline 50 1 49 1.04 50 4 50 4 50 5 50 5

Semi-Online 46 1.1 44 1.7 50 4 49 4.02 50 5 46 5.1
Online 43 1.6 49 1.1 48 4 42 4 50 5 40 5.2

K-means 18 1.6 0 7 50 4 1 7.9 50 5 2 6.7

G
ap

Offline 50 1 50 1 6 1.7 0 1 47 4.8 2 1.2
Semi-Online 50 1 50 1 7 1.7 0 1 47 4.8 2 1.2

Online 50 1 50 1 8 2.4 0 1 47 4.8 2 1.2
K-means 50 1 50 1 0 1.2 0 1.2 12 2 0 1.3

Si
lh

ou
et

te Offline 0 6.4 0 2 0 3 0 2.9 24 4.4 1 3.5
Semi-Online 0 5.8 0 2 0 3 0 2.9 24 4.4 1 3.5

Online 0 2.1 0 2.1 0 3 2 3.2 27 4.5 2 4.5
K-means 0 7.9 0 2.1 0 3 7 3.2 27 4.5 0 6.7

Table 5.1 – Comparison of the number of times we get the right value of clusters and the averaged
selected number of clusters obtained with the different methods without contaminated data and
with 10% of contaminated data.

Contaminated Data

We now focus on the impact of contaminated data on K-means and K-medians clustering and on
the choice of the number of clusters. In this aim, we generate data with a Gaussian mixture model
with 10 classes in dimension 5 (whose centers are generated randomly on the sphere of radius 10)
and each class contains 500 data points. The data are contaminated with the law Z = (Z1, ..., Z5)

where Zi are i.i.d, with 3 possible scenarios:

1. Zi ∼ T1

2. Zi ∼ T2

3. Zi ∼ U [−10, 10]

where Tm is the Student law with m degrees of freedom and U [a, b] is the continuous uniform
distribution on [a, b]. In what follows, let us denote by ρ the proportion of contaminated data.
In order to compare the different clustering results, we focus on the Adjusted Rand Index (ARI)
[Ran71, HA85].
Without contaminated data, the three K-medians algorithms as well as the K-means algorithm
have globally found the right number of clusters with an averaged ARI close to 0.99. In addition,
in the case of contaminated data (and especially for a contamination following a Student’s law
with 1 degree of freedom), the proposed slope method for K-medians successfully found more or
less the optimal number of clusters up to 28% contamination, and so with competitive ARI, and
globally over-perform K-means method. Note that in case of high contamination rate, we usually
get 11 clusters, which is logical since most of the contaminated data forms a kind of new cluster
around the center of the sphere.
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ρ 0 0.01 0.02 0.03 0.05 0.09 0.16 0.28 0.5

Z
i
∼
T 1

Offline

k̄

10 10 10.2 10.2 10.7 10.8 11.4 9.9 3.1
Semi-Online 10 10.1 10.2 10.7 11 11.2 12 10.6 3.2

Online 10 10.1 10.2 10.8 11.1 11.7 12.1 11.2 2.8
K-means 10.6 13.5 14 13.6 12.9 12.3 8.9 8.5 11.5
Offline

A
R

I

0.99 0.99 0.98 0.99 0.98 0.98 0.97 0.81 0.15
Semi-Online 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.91 0.19

Online 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.87 0.16
K-means 0.98 0.94 0.92 0.88 0.79 0.69 0.5 0.33 0.12

Z
i
∼
T 2

Offline
k̄

10 10 10.7 11 11 10.9 10.9 11.2 11.1
Semi-Online 10 10 10.9 11 11 10.9 10.9 11.2 11.1

Online 10 10.1 11.3 11 11 10.9 10.9 11.2 11.2
K-means 10.6 11.1 11.5 11.3 11.7 12.1 13 12.7 8
Offline

A
R

I

0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96
Semi-Online 0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96

Online 0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96
K-means 0.98 0.98 0.97 0.98 0.97 0.96 0.96 0.95 0.68

Z
i
∼
U
[−

10
,1

0]

Offline

k̄

10 10 10.1 10.1 10 10 10.5 11.9 10.8
Semi-Online 10 10 10.1 10.1 10 10 10.3 11.9 10.8

Online 10 10 10.1 10.1 10 10 10.5 11.1 11.2
K-means 10.6 10.7 11.1 11.2 12 11.6 11.8 11.3 9.2
Offline

A
R

I

0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96
Semi-Online 0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96

Online 0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96
K-means 0.98 0.97 0.97 0.98 0.97 0.96 0.96 0.92 0.79

Table 5.2 – Comparison of the selected number of clusters and the averaged ARI obtained with the
different methods with respect to the proportion of contaminated data for Zi ∼ T1, Zi ∼ T2 and
Zi ∼ U [−10, 10].

We now define the empirical L1-error of the centroids estimation by:

k̂

∑
j=1

min
j=1,..,k

∥∥ĉi − cj
∥∥ (5.4)

with c = {c1, ..., ck} and ĉ =
{

ĉ1, ..., ĉk̂

}
where k̂ selected number of clusters. The empirical L1-error

of the centroids estimation and the selected number of clusters, for each algorithms, are given in
Figure 5.7 and 5.8. In Figure 5.8 (left), only the K-medians algorithms is visible since the empirical
L1-error of the centroid estimation of K-means algorithm totally blows up and varies between the
values 10000 and 30000 with a median close to 15000. The K-means algorithm is clearly affected
by the presence of outliers and both its L1-error and its predicted number of clusters are now
much larger than for the other algorithms. Other three K-medians algorithms have globally good
performances, even if Offline is slightly better.
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Figure 5.7 – Box plots reflect empirical L1-error (see (5.4)) of centroid estimation (on the left) and
the selected number of clusters k (on the right) for the "Offline", "Semi-Online", "Online" and K-
means without contaminated data.
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Figure 5.8 – Box plots reflect empirical L1-error (see (5.4)) of centroid estimation (on the left) and
the selected number of clusters k (on the right) for the "Offline", "Semi-Online", "Online" and K-
means with 28% of contaminated data.

5.4 Estimating the Median Covariation Matrix with application to on-
line Robust PCA

5.4.1 Introduction

Principal Components Analysis is one of the most useful statistical tool to extract information by
reducing the dimension when one has to analyze large samples of multivariate or functional data
(see e.g. [Jol02, RS05, Ver06, HPV14]). Nevertheless, principal components, which are derived from
the spectral analysis of the covariance matrix, can be very sensitive to outliers (see [DGK81]) and
many robust procedures for principal components analysis have been considered in the literature
(see [HRVA08, HR09, MMY06, RvD99, CRG05, CFO07, HU07, BBT+11, LMS+99, Ger08, TKO12]
among others).
We consider in this section another approach for robust PCA based on a new robust dispersion
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indicator that we called Median Covariation Matrix (MCM). As shown in [KP12] the MCM has
the same eigenspaces as the usual covariance matrix when the distribution of the data is sym-
metric and the second order moment is finite so that considering the MCM to compute principal
components can be of interest. Since the MCM can be seen as the median of the random variable
(X−m1/2) (X−m1/2)

T (where m1/2 is the median of X), different algorithms can be considered
to get effective estimators of the MCM. When the dimension of the data is not too high and the
sample size is not too large, Weiszfeld’s algorithm (see [Wei37, VZ00] and Section 5.4.5) can be
directly used to estimate effectively both the geometric median and the MCM. When both the di-
mension and the sample size are large, we will show in this section how the stochastic algorithms
for estimating the geometric median can be adapted to estimate recursively and simultaneously
the geometric median as well as the MCM without necessity to store all the data. We then highlight
the interest of considering the MCM to perform principal components analysis of large samples of
high dimensional contaminated data through a simulation study.

5.4.2 Definition and framework

Let us denote by L(H) the space of linear operators on H. Denoting µ = E[X], remark that one
can see the covariance of X as

Cov[X] = argminV∈L(H)E

[∥∥∥(X− µ)(X− µ)T −V
∥∥∥2

F
−
∥∥∥(X− µ)(X− µ)T

∥∥∥2

F

]
where ‖.‖F denotes the Frobenius norm. Nevertheless, the covariance as well as the mean are not
robust at all. Then, we now focus on the Median Covaration Matrix (MCM for short) which is the
minimizer of the functional Gm1/2 : L (H) −→ R defined for all V ∈ L(H) by

Gm1/2(V) = E
[∥∥∥(X−m1/2) (X−m1/2)

T −V
∥∥∥

F
−
∥∥∥(X−m1/2) (X−m1/2)

T
∥∥∥

F

]
,

where m1/2 is the median of X. In other words, the MCM, denoted by V∗, can be seen as the
geometric median of the random variable Y = (X−m1/2) (X−m1/2)

T. In order to ensure the
existence and uniqueness of the MCM, we suppose from now that the following assumptions are
fulfilled:

(AMCM1) There is a positive constant CMCM such that for all h ∈ H and V ∈ L(H),

E

[
1

‖(X− h) (X− h)T −V‖2
F

]
≤ CMCM.

(AMCM2) For all V ∈ L(H), there is V ′ ∈ L(H) such that

〈
V, V ′

〉
= 0 and V

[〈
(X−m1/2) (X−m1/2)

T , V ′
〉

F

]
> 0,
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where 〈., .〉F is the inner product associated to the Frobenius norm. Since the MCM can be seen as
a median, these hypothesis are the mirror of Assumptions (Amedian1) and (Amedian2). As for the
median, these assumptions ensure that the MCM is uniquely defined and that for any h ∈ H, the
functional Gh defined for all V ∈ L(H) by

Gh(V) = E [‖Y(h)−V‖F − ‖Y(h)‖F]

with Y(h) := (X− h)(X− h)T is twice continuously differentiable. Indeed, one has

∇Gh(V) = −E

[
Y(h)−V
‖Y(h)−V‖F

]
and ∇2Gh(V) = E

[
1

‖Y(h)−V‖F

(
IL(H) −

(Y(h)−V)⊗F (Y(h)−V)

‖Yh −V‖2
F

)]

where for all A, B, V ∈ L(H), (A⊗FB) (V) = 〈A, V〉FB.

5.4.3 Online estimation of the Median Covariation Matrix

We suppose from now that we have i.i.d copies X1, . . . , Xn, Xn+1, . . . of X. Remark that since the
MCM can be seen as a median, knowing m1/2, one could use the averaged stochastic gradient
algorithm for estimating a median, i.e one could consider the recursive estimates defined by

Wn+1 = Wn + γn+1
(Xn+1 −m1/2) (Xn+1 −m1/2)

T −Wn∥∥∥(Xn+1 −m1/2) (Xn+1 −m1/2)
T −Wn

∥∥∥
F

Wn+1 = Wn +
1

n + 2
(
Wn+1 −Wn

)
with W0 = W0, and γn = cγn−γ with cγ > 0 and γ ∈ (1/2, 1). Nevertheless, since most of the time
the median is unknown, one has to simultaneously estimate m1/2 and V∗, leading to the following
recursive algorithm:

m1/2,n+1 = m1/2,n + γ
(m)
n+1

Xn+1 −m1/2,n

‖Xn+1 −m1/2,n‖

m1/2,n+1 = m1/2,n +
1

n + 2
(m1/2,n+1 −m1/2,n)

Vn+1 = Vn + γn+1
(Xn+1 −m1/2,n) (Xn+1 −m1/2,n)

T −Vn∥∥∥(Xn+1 −m1/2,n) (Xn+1 −m1/2,n)
T −Vn

∥∥∥
F

Vn+1 = Vn +
1

n + 2
(
Vn+1 −Vn

)
with m1/2,0 = m1/2,0, V0 = V0, γ

(m)
n = c(m)

γ n−γ(m)
and γn = cγn−γ, where c(m)

γ , cγ > 0 and γ(m), γ ∈
(1/2, 1). Remark that m1/2,n and m1/2,n corresponds to the averaged stochastic gradient algorithm
for estimating the median and does not depend on Vn nor Vn. Furthermore, the difference between
Vn and Wn is that we naturally replace the unknown median m1/2 by its averaged estimates m1/2,n.
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Remark that choosing V0 symmetric and positive leads Vn to be symmetric but we cannot ensure
that it is positive. In order to overcome this problem, a first solution is to project Vn on the convex
cone of non negative operators, which would require to compute each eigenvalues of Vn, which is
time consuming in high dimension. An other solution could be to consider a new stepsequence of
the form

γn+1,pos = min
{

γn+1,
∥∥∥(Xn+1 −m1/2,n) (Xn+1 −m1/2,n)

T −Vn

∥∥∥
F

}
or

γn+1,pos = γn+11
γn+1≤‖(Xn+1−m1/2,n)(Xn+1−m1/2,n)

T−Vn‖F
.

This choice of stepsequence, if V0 is chosen non negative, would ensure that Vn is non negative for
all n ≥ 0.

5.4.4 Convergence results

In this section, we focus on the rate of convergence of the estimates (Vn) ,
(
Vn
)
. We first establish

the strong consistency of the estimates.

Theorem 5.4.1 ([CGB15]). Suppose Assumptions (Amedian2), (AMCM1) and (AMCM2) hold. Then

Vn
a.s−−−−→

n→+∞
V∗ and Vn

a.s−−−−→
n→+∞

V∗.

The obtaining of this result relies on the almost sure rate of convergence of the averaged estimates
m1/2,n coupled with the use of Robbins-Siegmund Theorem. We now give the rate of convergence
in quadratic mean of the estimates:

Theorem 5.4.2 ([CGB15]). Suppose Assumptions (Amedian2), (AMCM1) and (AMCM2) hold. Then

E
[
‖Vn −V∗‖2

F

]
= O

(
1

nγ

)
and E

[∥∥Vn −V∗
∥∥

F

]
= O

(
1
n

)
.

Note that we so achieve the usual rate of convergence 1
nγ for gradient estimates and achieve the

usual rate 1
n for their averaged version. Nevertheless, we do not give explicitly the upper bound of

the quadratic mean error. Furthermore, injecting the estimates of the median in algorithms avoid
the obtaining of the asymptotic efficiency of the estimates.

5.4.5 Remark on the Weiszfeld’s algorithm

Note that as in the case of the median, for moderate sample size lying in small dimensional spaces,
one could estimate the MCM with the help of Weiszfeld algorithm. More precisely, considering
the Weiszfeld estimate of the median m1/2,n,T (see Section 5.2.4), one could consider the iterative
algorithm

Vn,t+1 =
∑n

k=1
(Xk−m1/2,n,T)(Xk−m1/2,n,T)

T

‖(Xk−m1/2,n,T)(Xk−m1/2,n,T)
T−Vn,t‖F

∑n
k=1

1
‖(Xk−m1/2,n,T)(Xk−m1/2,n,T)

T−Vn,t‖F

.
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5.4.6 Application to robust PCA

Application to robust online PCA

As mentioned before, we are interested in the estimation of the MCM since, if the distribution of X
is symmetric, the MCM and the usual covariance matrix have the same eigenvectors, but this last
one is not robust, i.e it is very sensitive to the presence of outliers. In this aim, we now focus one
the recursive estimation of the q eigenvectors of V∗ associated to the q largest eigenvalues, and so,
without performing a spectral decomposition of Vn at each new observation. More precisely, we
consider the following recursive strategy

uj,n+1 = uj,n +
1

n + 1

(
Vn+1

uj,n∥∥uj,n
∥∥ − uj,n

)
, j = 1, . . . , q

combined with an orthonormalization of u1,n+1, . . . , uq,n+1. Remark that this approach enables to
update the main eigenvectors with only O

(
d2) operations at each update.

Protocol

In what follows, we consider independent realizations of a random variable Y ∈ Rd where

Y = (1− B(δ)) X + B(δ)ε

is a mixture of two distributions, and X, B, ε are independent random variables. The random vector
X has a centered Gaussian distribution in Rd with covariance matrix Σ[l, j] = min(l, j)/d. The
multivariate contamination comes from ε, while B(δ) ∼ B(δ) controls the rates of contamination.
In what follows, we consider three different scenarios:

• The elements of vector ε are d independent realizations of a Student t distribution with one
degree of freedom. This means that the first moment of Y is not defined when δ > 0.

• The elements of vector ε are d independent realizations of a Student t distribution with two
degrees of freedom. This means that the second moment of Y is not defined when δ > 0.

• The vector ε is distributed has a "reverse time" Brownian motion. It has a Gaussian centered
distribution, with covariance matrix [Σε]`,j = 2 min(d− `, d− j)/d. The covariance matrix of
Y is (1− δ)Σ + δΣε.

For the averaged recursive algorithms, we have considered c(m)
γ = cγ = 2 and a speed rate of

γ = γ(m) = 3/4. Note that the values of these tuning parameters have not been particularly opti-
mized. The estimation error of the eigenspaces associated to the largest eigenvalues is evaluated
by considering the squared Frobenius norm between the associated orthogonal projectors.
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Figure 5.9 – Estimation errors (at a logarithmic scale) over 200 Monte Carlo replications, for
n = 200, d = 50 and a contamination by a t distribution with 2 degrees of freedom with δ = 0.02.
MCM(W) stands for the estimation performed by the Weiszfeld’s algorithm whereas MCM(R) de-
notes the averaged recursive approach.

Comparison with usual robust PCA techniques

We first compare the performances of the two estimates of the MCM based on the Weiszfeld’s
algorithm and the recursive algorithms with more classical robust PCA techniques. We generated
samples of Y with size n = 200 (the conclusions do not differ much for different sample sizes) and
dimension d ∈ {50, 200}, over 500 replications. Different levels of contamination are considered :
δ ∈ {0, 0.02, 0.05, 0.10, 0.20}. For both dimensions d = 50 and d = 200, the first eigenvalue of the
covariance matrix of X represents about 81 % of the total variance, and the second one about 9 %.
The median errors of estimation of the eigenspace generated by the first two eigenvectors (q =

2) are given in Table 5.3. In Figure 5.9, the distribution of the estimation error is drawn for the
different approaches.
Note that even when the level of contamination is small (2% and 5%), the performances of classical
PCA are strongly affected by the presence of outlying values in such (large) dimensions. When
d = 50, the MCD algorithm and the MCM estimation provide the best estimations of the original
two dimensional eigenspace, whereas when d gets larger (d = n = 200), the MCD estimator
can not be used anymore (by construction) and the MCM estimator remains the most accurate.
The performances of the spherical PCA are slightly less accurate whereas the median error of the
robust PP is about four times larger. We can also note that the recursive MCM algorithm, which is
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t 1 df t 2 df inv. B. t 1 df t 2 df inv. B.
δ Method d = 50 d = 200

0% PCA 0.015 0.015
2% PCA 3.13 1.18 0.677 3.95 1.85 0.691

PP 0.097 0.087 0.090 0.099 0.088 0.093
MCD 0.022 0.021 0.021 – – –
Sph. PCA 0.029 0.028 0.029 0.031 0.027 0.028
MCM (Weiszfeld) 0.021 0.021 0.022 0.023 0.021 0.021
MCM (recursive) 0.023 0.024 0.025 0.026 0.023 0.026

5% PCA 3.82 1.91 0.884 3.96 1.98 0.925
PP 0.100 0.099 0.096 0.097 0.091 0.098
MCD 0.022 0.020 0.024 – – –
Sph. PCA 0.029 0.029 0.033 0.030 0.029 0.038
MCM (Weiszfeld) 0.022 0.021 0.029 0.023 0.023 0.033
MCM (recursive) 0.026 0.024 0.033 0.027 0.026 0.038

10% PCA 3.83 1.95 1.05 3.96 1.99 1.12
PP 0.107 0.109 0.099 0.100 0.105 0.093
MCD 0.023 0.022 0.023 – – –
Sph. PCA 0.031 0.031 0.059 0.030 0.028 0.056
MCM (Weiszfeld) 0.024 0.023 0.059 0.022 0.023 0.056
MCM (recursive) 0.030 0.027 0.072 0.028 0.026 0.069

20% PCA 3.84 2.02 1.19 3.96 2.01 1.25
PP 0.114 0.132 0.134 0.084 0.115 0.132
MCD 0.025 0.026 0.026 – – –
Sph. PCA 0.038 0.036 0.140 0.033 0.035 0.155
MCM (Weiszfeld) 0.030 0.029 0.167 0.025 0.026 0.184
MCM (recursive) 0.040 0.035 0.211 0.035 0.031 0.224

Table 5.3 – Median estimation errors, according to criterion R(P̂q, Pq) with a dimension q = 2, for
datasets with a sample size n = 200, over 500 Monte Carlo experiments.

designed to deal with very large samples, performs well even for such moderate sample sizes (see
also Figure 5.9).

5.5 Application to Robust Mixture Models

This section is based on [GBR22].

5.5.1 Introduction

In Section 5.3, we focused on hard partitioning methods, and in particular on K-medians algo-
rithms. This section is dedicated to model-based clustering, which is one of the most popular soft
clustering method [MP00]. It relies on the assumption that the observed data come from a mixture
model, so that each cluster is characterized by a specific distribution. One reason for the popular-
ity of these methods is that the maximum likelihood estimates of the parameters can be obtained
via the well-known EM algorithm [DLR77], accompanied by statistical guarantees. Nevertheless,
these methods are often very sensitive to the presence of outliers.
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Several robust approaches have been proposed to overcome this problem. A first track sticks to
the parametric framework, but uses emission distributions with heavier tails (see, e.g., [PM00,
Wan15, SPIM15, RS19]). Alternatively, a component associated with (possibly improper) paramet-
ric distribution can be added, in order to capture outliers ([BR93, CH16, CH17, FP20]). A second
approach is to prune the observations, so that the outliers do not weigh too heavily on the esti-
mates [GEGMMI08]. A final approach is to use a dedicated weighted contrast (instead of negative
log-likelihood [GYZ19, GMYZ21]).

This section focuses on the robustness of model-based clustering methods to the presence of out-
liers, meaning that we make no assumptions about how outliers deviate from prescribed emis-
sion distributions. To this end, we adopt a fully parametric model-based clustering framework,
but modify the EM algorithm (more specifically, the M-step) to ensure robustness. Our proposed
method resorts to the estimation of the median vector and the Median Covariation Matrix instead
of the mean vector and the covariance matrix. In this section, we first propose methods to get ro-
bust estimates of the covariance when the law of the studied variable is known before applying it
to robust model-based clustering. All the proposed methods are available in the R package RGMM
accessible on CRAN8.

5.5.2 Robust estimation of the variance

The algorithms

Let us suppose from now that X admits a second order moment and let us denote by µ and Σ its
mean and variance (supposed to be positive). Let us recall that if the distribution of X is symmetric,
the MCM of X denoted by V∗ and Σ have the same eigenvectors ([KP12]). Furthermore, denoting
U = (U1, . . . , Ud)

T := Σ−1/2 (X− µ) and δ (resp. λ) the vector of eigenvalues (by decreasing order)
of V∗ (resp. Σ), one has ([KP12]),

δk = λkE
[
U2

k h (δ, λ, U)
]
(E [h (δ, λ, U)])−1 (5.5)

where h(δ, λ, U) :=
(

∑d
i=1
(
δi − λiU2

i
)2

+ ∑i 6=j λiλjU2
i U2

j

)−1/2
. In what follows, we will denote by

ΨU the function such that
ΨU (V∗) = Σ. (5.6)

Let us suppose from now that the law of U is known and that we know how to simulate i.i.d
random variables following this law (which is the case for multivariate Gaussian, Student or
Laplace laws among others). Let us consider estimates of the eigenvalues of the MCM denoted
by δn = (δ1,n, . . . , δd,n) and the associated estimates

(
v1,n, . . . , vp,n

)
of the eigenvectors (see Section

5.4 to see how to build such estimates). In order to use a Monte Carlo method to estimate robustly
the eigenvalues of the variance, we now consider that we generate U1, . . . , UN i.i.d copies of U. A
first solution to estimate λ is so to consider the following fix point algorithm: for all t ∈ N, and

8https://cran.r-project.org/package=RGMM

https://cran.r-project.org/package=RGMM
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k = 1, . . . , d,

λn,N,t+1[k] = δn[k]
∑N

i=1 h (δn, λn,N,t, Ui)

∑N
i=1 (Ui[k])

2 h (δn, λn,N,t, Ui)

where for all x = (x1, . . . , xd)
T ∈ Rd, x[k] = xk. In order to try to improve the convergence, we

now introduce the following gradient algorithm: for all t ∈N,

λn,N,t+1 = λn,N,t − ηt

n

∑
k=1

λn,N,t
(
U2

i h (δn, λn,N,t, Ui)− δnh (δn, λn,N,t, Ui)
)

where ηt is non-decreasing positive step sequence. Finally, we now give a sequential estimate
of the eigenvalues of the variance, which consists in a Robbins-Monro algorithm [RM51] and its
weighted averaged version [MP11]: for all k ≤ N − 1, one has

λn,N,k+1 = λn,N,k − γk+1
(
λn,N,kU2

k+1h (δn, λn,N,k, Uk+1)− δnh (δn, λn,N,k, Uk+1)
)

λn,N,k+1 = λn,N,k +
log(k + 1)w

∑k
l=0 log(l + 1)w

(
λn,N,k+1 − λn,N,k

)
,

with λn,N,0 = λn,N,0, γk = cγk−γ with cγ > 0 and γ ∈ (1/2, 1), ω ≥ 0.

Simulations

No outlier. We first consider the estimation of the variance and median in absence of outliers. To
this aim, we consider X ∼ N (0, Σ), with

Σ =


4 0.86 0.83 0.29 1.35

0.86 4 1.4 0.97 1.79
0.83 1.4 4 0.35 0.84
0.29 0.97 0.35 4 0.86
1.35 1.79 0.84 0.86 4

 .

We first focus on the accuracy of each method to estimate the variance. To do so, we consider
n = 105 i.i.d copies of X and estimate the MCM with the help of the Weiszfeld’s algorithm. In
Figure 5.10, we show the evolution of the quadratic mean error of the estimates with respect to
the sample size. More precisely, we compared the estimates obtained with fix point algorithm,
with 10, 20 and 50 iterations, with the iterative gradient algorithm with 10, 20 and 50 iterations
and the weighted averaged Robbins-Monro estimates (Robbins-Monro). We also compared the
behavior of the methods but with fixed computation budget. We observe that all methods achieve
convergence and have similar behaviors when they use samples with same sizes. Nevertheless,
for fixed computation budget, the method based on the Robbins-Monro algorithm seems (without
surprise) to lead to better results.



110 Application to robust statistics
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Figure 5.10 – Evolution of the quadratic mean error of the different methods with respect to the
sample size (on the left) and to computation time (on the right).

With outliers. We then introduced an increasing fraction δ of outliers following three possible
scenarios (a), (b) or (e) (see Section 5.5.4 for more details). We considered samples with size
n = 5000, and estimated the MCM with the help of the Weiszfeld algorithm (indicated by (W))
or with the ASGD algorithm (indicated by (R)). We then estimated the eigenvalues of the vari-
ance with the three proposed methods and with a sample size of N = 2000 for the Monte Carlo
method before building the variance. For iterative methods, we used T = 50 iterations. Remark
that the different methods for estimating robustly the variance perform very well and so, even for
high contamination. In addition, one can see that even if Robbins-Monro method slightly under
perform the other robust alternatives, it performs well any way. Then, since Robbins-Monro pro-
cedure is less expansive in term of calculus time, and since with a fixed computational budget it
can over performs other methods, it will be the chosen method in the sequel.

5.5.3 Robust Mixture Model

Mixture model

In what follows, we consider a random variable X following a mixture with K classes, i.e

X ∼
K

∑
k=1

π∗k Yk, (5.7)

that is Z ∼ M(1, π∗) and (X | Z = k) ∼ Yk, where π∗ = (π∗1 , . . . , π∗K) belongs to SK :={
π, πk > 0, ∑K

k=1 πk = 1
}

. Furthermore, we suppose from now that Yk satisfies the following con-
ditions:

• Yk admits a second order moment, and we denote by µ∗k and Σ∗k its mean and variance;

• the distribution of Yk is symmetric;

• the variance of Yk is positive;
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δ (%) FixPoint(R
)

FixPoint(W
)

G
radient(R

)

G
radient(W

)

R
obbins

(R
)

R
obbins

(W
)

V
ariance

(a
):

U

0 0.32 0.24 0.34 0.31 0.45 0.36 0.11
2 0.39 0.34 0.36 0.34 0.40 0.36 39.75
3 0.36 0.39 0.39 0.36 0.43 0.38 78.20
5 0.63 0.51 0.59 0.57 0.57 0.59 212.60
9 1.35 1.36 1.29 1.21 1.28 1.06 682.80
16 4.01 3.88 3.91 3.89 3.41 3.36 2.103

28 16.65 17.56 16.21 16.13 13.78 13.51 7.103

50 154.52 165.05 133.19 142.32 109.12 116.59 2.104

(b
):

T 1

0 0.31 0.29 0.32 0.34 0.38 0.40 0.10
2 0.33 0.31 0.30 0.31 0.44 0.37 2.108

3 0.36 0.28 0.29 0.35 0.40 0.36 2.107

5 0.35 0.36 0.41 0.40 0.43 0.54 109

9 0.49 0.46 0.48 0.47 0.67 0.65 7.109

16 0.86 0.77 0.80 0.76 0.98 0.93 8.1013

28 1.74 1.76 1.64 1.78 2.01 1.92 5.1011

50 5.49 5.28 5.38 5.52 5.59 5.84 2.1013

(e
):

T 2

0 0.29 0.28 0.37 0.29 0.46 0.33 0.12
2 0.33 0.33 0.31 0.34 0.41 0.48 1.06
3 0.35 0.40 0.42 0.38 0.63 0.41 0.59
5 0.52 0.60 0.48 0.49 0.66 0.76 7.03
9 0.86 1.02 0.79 0.98 1.10 1.20 6.10
16 1.99 2.07 2.08 2.21 2.50 2.54 330.59
28 5.80 5.59 5.50 5.88 5.92 6.20 9.106

50 14.84 15.12 14.99 15.16 15.38 15.31 2.104

Table 5.4 – Multivariate Gaussian case: Mean quadratic error of the estimates of the variance for
the different methods and for different contamination scenarios and fractions δ.

• the random variable Yk is absolutely continuous with density φµ∗k ,Σ∗k (.) determined by µ∗k , Σ∗k
and known parameters.

Remark that these conditions are satisfied for multivariate Gaussian, Student and Laplace mixtures
(to name a few). The three first conditions enable to build the mean and the variance robustly
with the method proposed in previous section, while the last one just ensures that the density
only depends on known parameters or on parameters that can be estimated robustly. Of course,
one can adapt this work for more specific cases such as Student mixtures with unknown degrees
of freedom. In what follows, we will denote µ∗ = (µ∗1 , . . . , µ∗K), Σ∗ = (Σ∗1 , . . . , Σ∗K) and θ∗ =

(π∗, µ∗, Σ∗). The popular EM algorithm ([DLR77]) aims at providing the maximum likelihood
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estimates by minimizing the empirical risk

Rn (π, µ, Σ) = − 1
n

n

∑
i=1

K

∑
k=1

τk(Xi)
(
log (πk) + log

(
φµk ,Σk (Xi)

))
,

the theoretical counterpart of which is

R (π, µ, Σ) = −Eθ∗

[
K

∑
k=1

τk(X)
(
log (πk) + log

(
φµk ,Σk (X)

))]
,

where τk(X) = Pθ∗ [Z = k | X] =
π∗k φµ∗k ,Σ∗k

(X)

∑K
`=1 π∗` φµ∗

`
,Σ∗
`
(X)

Furthermore, we know that

π∗ ∈ arg min
π∈SK

−Eθ∗

[
K

∑
k=1

τk(X) log πk

]

while

µ∗ = arg min
µ

Eθ∗

[
K

∑
k=1

τk(X) ‖X− µk‖2

]
Σ∗ = arg min

Σ
Eθ∗

[
K

∑
k=1

τk(X)
∥∥∥(X− µ∗) (X− µ∗)T − Σk

∥∥∥2

F

]
.

Loss

Consider a mixture model as defined in (5.7) with parameter θ∗ = (π∗, µ∗, Σ∗) and let us denote
by m∗ = (m∗1 , . . . , m∗K) and V∗ = (V∗1 , . . . , V∗K) the medians and MCM of the classes. Intuitively,
the idea is to replace, in the usual EM algorithm, the estimates of the mean µk and the variance Σk

of each class by the median m∗k and the transformation of the MCM ΨU
(
V∗k
)

of each class. In this
aim, let us introduce the two following functions:

G2(m) = Eθ∗

[
K

∑
k=1

τk(X) ‖X−mk‖
]

G3(m, V) = Eθ∗

[
K

∑
k=1

τk(X) ‖(X−mk)(X−mk)
ᵀ −Vk‖F

]
.

The following proposition ensures that the minimizers of these functions correspond to m∗ and
V∗, which will be crucial to construct robust estimates of θ∗.

Proposition 5.5.1 ([GBR22]). Consider a mixture model as defined in (5.7) and parametrized with θ∗ =

(π∗, µ∗, Σ∗). Then

m∗ = arg min
m

Eθ∗ [G2(m)] , and V∗ = arg min
V

Eθ∗ [G3(m∗, V)] .

Furthermore, m∗ = µ∗, ΨU (V∗) := (ΨU (V∗1 ) , . . . , ΨU (V∗K)) = Σ∗, τk(X) =
π∗k φ

m∗k ,ΨU(V∗k )
(X)

∑K
`=1 π∗` φ

m∗
`

,ΨU(V∗
` )

(X)
, and

Rπ∗ (m∗, Ψ (V∗)) = min
µ,Σ

Rπ∗ (µ, Σ) = Rπ∗ (µ
∗, Σ∗) .
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In other words, we propose here a new parametrization of the problem where the new parameters
correspond to robust indicators.

Fix-point property

The following proposition enables to see (π∗, m∗, V∗) as a fixpoint of a function g∗.

Proposition 5.5.2 ([GBR22]). Consider a mixture model as defined in (5.7) and parametrized with θ∗ =

(π∗, µ∗, Σ∗). Then, (π∗, m∗, V∗) (with π∗, m∗, V∗ defined in Proposition 5.5.1) satisfy

(π∗, m∗, V∗) = g∗ (π∗, m∗, V∗)

where g∗(π, m, V) =
(

g∗1(π), g∗2,1 (m1)), . . . , g∗2,K (mK) , g∗3,1 (V1) , g∗3,K (VK)
)

with g1(π) = (g1,1 (π) , . . . , g1,K (π))

and

g1,k(π) := E

[
πkφ

(
X, m∗k , ΨU

(
V∗k
))

∑K
i=1 πiφ

(
X, m∗i , ΨU

(
V∗i
))] g2,k (mk) :=

E
[

τk(X)X
‖X−mk‖

]
E
[

τk(X)
‖X−mk‖

] g3,k (Vk) :=

E

[
τk(X)(X−m∗k)(X−m∗k)

T∥∥∥(X−m∗k)(X−m∗k)
T−Vk

∥∥∥
F

]

E

[
τk(X)∥∥∥(X−m∗k)(X−m∗k)

T−Vk

∥∥∥
F

]

and τk(X) =
π∗k φ

m∗k ,ΨU(V∗k )
(X)

∑K
`=1 π∗` φ

m∗
`

,ΨU(V∗
` )

(X)
.

5.5.4 Simulations

Simulation design

Simulation parameters. We considered random vectors with dimension p = 5 and mixture mod-
els with K = 3 clusters with equal proportions. We defined the three mean vectors µ1, µ2 and µ3,
each with their all p coordinates equal to 0, 3 and −3, respectively and consider three covariance
matrices Σ1, Σ2 and Σ3 (see [GBR22] for more details). We then considered the Gaussian mixture
distribution

K−1
K

∑
k=1
Np (·; µ∗k , Σ∗k ) .

Contamination scenarios. A contamination rate δ ranging from 0 (no contamination) to 50% was
applied to each cluster. Namely, a same fraction δ of the observations of each cluster k = 1, . . . K
was drawn with one of the five following contaminating distributions:

(a) uniform distribution over the hypercube: U{[−20, 20]p};

(b) Student distribution with null location vector, identity scale matrix and degree of freedom 1:
T (0p, Ip, 1);
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(c) Student distribution with location vector µ∗k , identity scale matrix and degree of freedom 1:
T (µ∗k , Ip, 1);

(d) Student distribution with null location vector, identity scale matrix and degree of freedom 2:
T (0p, Ip, 2);

(e) Student distribution with location vector µ∗k , identity scale matrix and degree of freedom 2:
T (µ∗k , Ip, 2).

The contaminating distribution has no first moments under scenarios (b) and (c), and no variance
under scenarios (d) and (e). Under scenarios (c) and (e), the contaminating distribution has the
same center as the corresponding cluster so the outliers can be considered as belonging to the
cluster, whereas outliers arising from different clusters can not be distinguished under scenarios
(a), (b) and (d).

Evaluation criteria. For each simulated dataset, we run the four algorithms (with fixed or se-
lected K) and obtained estimates of the parameters µk and Σk, as well as a classification of each
observation.

Classification: we used the Adjusted Rand Index (ARI) to compare the estimated classification
with the simulated one.

Parameter estimates: when considering the true number of cluster K, we computed.

• the mean squared error for the center: MSE(µ) = K−1 ∑k ‖µ∗k − µ̂k‖2/p,

• the mean squared error for the covariance: MSE(Σ) = K−1 ∑k ‖Σ∗k − Σ̂k‖2/p2.

Model selection: when considering the case of unknown number of cluster, we considered both
the BIC [Sch78] and the ICL [BCG00, MP00] criteria.

Initialization of the algorithm: Two kind of initialization are considered:

• One can initialize the algorithm considering the clustering given by the robust hierar-
chical clustering proposed by [GBC16], which enables to have τ1, and one can run the
end of the algorithm.

• One can choose randomly K centers from the data and take Σk = Id and πk = 1
K for

all k. Remark that this can be done for several random choice, and one can take the
initialization leading to the best final log-likelihood.

Remark that one can choose these two kinds of initialization and take the best choice (i.e with
the best log-likelihood).
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Simulations

We consider here a total sample size of n = 1500, i.e there are nk = 500 observations in each
group. Since no substantial differences between the results obtained when selecting the number of
clusters K with BIC and ICL has been observed, only the results obtained with BIC are presented.

The first two columns of Figure 5.11 compare the results of maximum-likelihood (GMM) inference
with the proposed approach (RGMM) in terms of classification. When fixing the number of clus-
ters to its true value K∗ = 3, we observe a dramatic drop of the classification accuracy of GMM
estimation, even for a very moderate fraction of outliers (δ = 2%), as compared to RGMM, in all
scenarios. We observe that estimating the number of clusters with BIC improves the classification
performances of GMM, at the price of an increase of the number of clusters. On the contrary, the
RGMM approach keeps selecting the right number of clusters, even with a medium fraction of
outliers (δ ∼ 10− 20%). As a consequence, model selection does not improve the classification ac-
curacy of RGMM. Lastly, we observe that the difference between GMM and RGMM is even more
obvious when outliers can each be associated with one clusters, that is under scenarios (c) and (e),
as opposed to scenarios (b) and (d), respectively.

The last two columns of Figure 5.11 compare the respective accuracy of GMM and RGMM in
terms of parameter estimation. The precision achieved by RGMM is several order of magnitude
better than this of GMM, and, except under scenario (a), this accuracy remains the same for large
contamination fractions (up to δ = 50%). Again, model selection does not improve the estimation
precision of the robust approach.
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Classification Parameter estimation
ARI K̂ MSE(µ) MSE(Σ)

(a)

(b)

(c)

(d)

(e)

Figure 5.11 – Gaussian mixture model: classification accuracy (ARI), estimated number of clusters
K̂, estimation error fu the mean (MSE(µ)) and for the variance (MSE(Σ)) for scenarios (a) to (e),
with nk = 500 observation in each of the K∗ clusters (n = 1500). Black: maximum likelihood
(GMM); red: robust estimation (RGMM). Solid line (•): with true number of clusters K∗; dotted
line (�): with number of clusters estimated with BIC.



Perspectives

We give here some perspectives in the continuity of the works presented in this manuscript.

Stochastic Newton algorithms

Part of my research project consists in further developing second order algorithms. In the short
term this could consist in obtaining non asymptotic convergence results for adaptive methods
such as Adagrad algorithms and stochastic Newton algorithms. This could enable to better un-
derstand the theoretical gain of these methods compare to the usual stochastic gradient algorithm.
In the longer term, there would be many other challenges regarding online Newton methods. For
example, one could propose universal methods to recursively estimate the inverse of the Hes-
sian with a reduced computational cost. Indeed, the methods proposed so far are based on the
Sherman-Morrison formula and can only be adapted to some particular cases. A simple example
to understand the importance of a general method is to consider the estimation of p-means. In this
case, it is not possible to use the Sherman-Morrison formula, so that, as far as we know, no online
stochastic Newton algorithm has been proposed yet.
We could also take advantage of the streaming methods developed in Chapter 4 to propose stochas-
tic Newton algorithms with only O(nd) operations (n being the sample size and d the dimension)
against O(nd2) currently. This would allow to have methods comparable to stochastic gradient
algorithms in terms of computation time, but more adapted to ill-conditioned problems.
In addition, observe that several modification of usual stochastic gradient algorithms have been in-
troduced. More precisely, the momentum methods have been introduced to give more weights for
coordinates whose gradients point in the same direction, and so reduce oscillations [Qia99, LR20].
This has then be improved by the Nesterov acceleration method [MJ19, EBB+21]. Then it could be
of particular interest to see how to adapt these procedures to stochastic Newton algorithms.

Parallelization and federated learning

Parallelization consists in distributing the data on several agents (cores, processors, servers,...)
which then process these data before centralizing the information. This allows in practice to re-
duce the computation time but this situation is also encountered in a concrete way when data are
collected by different servers which can then process them and send only the main information
rather than sending all the data. For instance, [ZWLS10] deals with gradient descent for least
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square type functions while [RR13] also deals with stochastic gradient by proposing a rewriting
procedure where each processor can rewrite the data of an other. Finally, [BFH13, GBS20] focus
on parallelized averaged stochastic gradient algorithms. In the short term, the idea would be to
adapt Newton methods for parallelization, with possible communication of informations between
agents. Then, an objective would be to build on this work to consider the adaptation of these meth-
ods for federated learning, i.e. for the case where the agents do not necessarily minimize the same
cost functions [DFMR21, VPD+22].

Stochastic algorithms for Optimal Transport

The Kantorovich formulation of Optimal Transport problem provides a metric (Wasserstein dis-
tance) for the spaces of measures. The computation of this distance can then be seen as the mini-
mization of a convex function. One objective would be to understand, based on many recent works
(see [GCPB16, BB21] for example), how online methods such as stochastic gradient algorithms can
be adapted to this problem. Furthermore, classical optimal transport approaches rely on an en-
tropic regularization of the problem and the regularization is often "fixed" beforehand. It would be
possible to think about the implementation of a regularization that would adapt itself over time,
which is especially suited in an online context. In addition and in the continuity of [BBGS21] where
an online stochastic Gauss-Newton based on the Sherman-Morrison formula was introduced, one
could go on developing different second order methods in this context.

Robust statistics

In Chapter 5, we have seen how to build robust estimates of the variance. This approach is based on
the spectral decomposition of the estimates of the Median Covariation Matrix, coupled with Monte
Carlo and Robbins-Monro methods. Unfortunately, although the simulations are very hopeful, no
theoretical guarantees have been given. Then, a first step should be to establish the consistency of
the estimates, in the continuity of Chapters 1 and 2. A second step would be to propose a fully
online alternative to the proposed method before applying it to the online detection of outliers
based on the Mahalanobis distance [RD99]. Finally, one could apply the developped methodoly to
the robust estimation of Gaussian means in the case where the variance is unknown (see [DM22]
for more details).



Appendix A

Details results for the bounds of the
quadratic mean errors

A.1 Detailed results of Chapter 1

A.1.1 Case where ∇G is not uniformly bounded

The following lemma is the detailed version of Lemma A.1.1.

Lemma A.1.1 ([GB21]). Suppose Assumptions (A1b’), (A2), (A3) and (A4a’) are fulfilled. Then, for all
n ≥ 1,
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The following theorem is the detailed version of Theorem 1.5.1.
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A.1.2 Case where ∇G is bounded

The following lemma is the detailed version of Lemma 1.5.1 in the case where ∇G is bounded.

Lemma A.1.2 ([GB21]). Suppose Assumptions (A1b’), (A2), (A3) and (A4a’) are fulfilled and that C̃2 =

C̃′2 = 0. Then, for all n ≥ 1,
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The following theorem is the detailed version of Theorem 1.5.1 in the case where ∇G is bounded.
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A.1.3 Applications

The following corollary is the detailed version of Corollary 1.5.1.

Corollaire A.1.1. Suppose that X admits a fourth order moment and that there are positive constants
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The following corollary is the detailed version of Corollary 1.5.2.

Corollaire A.1.2. Suppose Assumption (Hp-means2) holds and that X admits a 2p-th order moment. Then,
for all n ≥ 1,
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A.2 Detailed results of Chapter 2

A.2.1 Case where ∇G is not uniformly bounded

The following theorem is the detailed version of Theorem 2.3.1
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Theorem A.2.1 ([GB21]). Suppose Assumptions (A1b’), (A2), (A3) and (A4a’) hold. Then, for all n ≥ 1,
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The following theorem is the detailed version of Theorem 2.3.2

Theorem A.2.2 ([GB21]). Suppose Assumptions (A1b’), (A2), (A3), (A4a’) and (A5b) hold. Then, for all
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A.2.2 Case where ∇G is bounded

The following theorem is the detailed version of Theorem 2.3.1 in the case where ∇G is bounded.

Theorem A.2.3. Suppose Assumptions (A1b’), (A2), (A3) and (A4a’) hold and that C̃2 = C̃2′ = 0. Then,
for all n ≥ 1,
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where a0, u0, σ2 are defined in Lemma A.1.1, cn′0
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The following theorem is the detailed version of Theorem 2.3.2 in the case where∇G is bounded/

Theorem A.2.4 ([GB21]). Suppose Assumptions (A1b’), (A2), (A3), (A4a’) and (A5b) hold and that
C̃2 = C̃2′ = 0. Then, for all n ≥ 1,√
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A.2.3 Applications

The following corollary is the detailed version of Corollary 2.3.1.

Corollaire A.2.1. Suppose X admits a moment of order 4 and that there are positive constants rlog, λlog

such that for all h ∈ B
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with Llog, σlog, alog, λlog, Alog, cn′log
defined in Corollary A.1.1 and Alog
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The following corollary is the detailed version of Corollary 2.3.2.

Corollaire A.2.2. Suppose Assumption (Hp-means2) holds and that X admits a 2p-th order moment. Then,
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for all n ≥ 1,
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where u0, c1,p, σ2
p and Ap are are defined in Corollary 1.5.2 and λK is given by (1.10). Furthermore, A(p)

∞ :=
√

Ap

cγ
∑n≥0 e−

1
8 λKcγn1−γ

, B(p)
∞ := ∑n≥0 e−

1
8 cγ

λ2
K

Cp n1−γ

e(8Cp+2)c2
γ

2γ
2γ−1+2C2

pc3
γ

3γ
3γ−1

(
√

u0 + σpc
3
2
γ

√
3γ

3γ−1

)
, and

D(p)
∞ :=

6
√

2c1,pC′p
λ2

Kcγ
∑n≥0 e−

1
16

λ2
K

Cp cγn1−γ

A.3 Detailed results of Section 5.2.3

Let us now focus on the rate of convergence in quadratic mean of the estimates. More precisely,
the aim is to apply Theorem A.1.2. In this aim, let us recall two important results. First, under
assumptions (Amedian1a) and (Amedian2), it was proven in [CCZ13] that there is K large enough
such that

cmin := inf
‖v‖=1

V
[
〈v, X〉 1‖K‖

]
> 0.

Then, one has for all h ∈ B (m1/2, 1) [CCZ13]

λmin
(
∇2G1/2(h)

)
=

1
(K + 1)3 cmin.

In addition, it was proven in [GB16a] that under Assumption (Amedian1b),

∥∥∇G1/2(h)−∇2G1/2 (m1/2) (h−m1/2)
∥∥ ≤ C2

med ‖h−m1/2‖2 .

Then, Assumption (A4a’) is fulfilled. In addition, up to take the max, we will suppose that
Cmed ≥ 1. Let us now denote λ1/2 := λmin

(
∇2G1/2 (m1/2)

)
and apply Theorem A.1.2 to obtain

the following rate of convergence for the stochastic gradient estimates of the median, which is the
detailed version of Theorem 5.2.3.
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Theorem A.3.1. Suppose Assumption (Amedian1) and Assumption (Amedian2) hold. Then, for all n ≥ 1,
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We now give the detailed version of Theorem 5.2.4

Theorem A.3.2. Suppose Assumption (Amedian1) and Assumption (Amedian2) hold. Then, for all n ≥ 1,√
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