Sorbonne Université Année 2023/2024

M2 Probabilités et finance, Probabilités et Modèles aléatoires

Premier semestre

Feuille de TD 4

Exercice 1 : Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \mathcal{N}(0,1)$ et Y suit une loi de Rademacher de paramètre $p \in (0,1)$, i.e $\mathbb{P}[Y=1] = p$ et $\mathbb{P}[Y=-1] = 1 - p$.

- 1. Montrer que $XY \sim \mathcal{N}(0,1)$.
- 2. Montrer que Cov (X, XY) = 2p 1
- 3. Les variables *X* et *XY* sont-elles indépendantes?
- 4. Montrer que le vecteur (X, XY) n'est pas gaussien.

Exercice 2: On considère le modèle

$$Y_i = m + \sigma \epsilon_i, \qquad 1 \le i \le n$$

où les v.a. ϵ_i sont i.i.d. de loi commune $\mathcal{N}(0,1)$, pour des paramètres $m \in \mathbb{R}$ et $\sigma > 0$. On note $\overline{Y}_n = n^{-1} \sum_{i=1}^n Y_i$.

- 1. On suppose que σ est connu.
 - (a) Déterminer un intervalle de confiance symétrique pour m de niveau 1α .
 - (b) Pour $\sigma=3$, combien d'observations doit-on avoir pour que la longueur de l'intervalle de confiance de niveau 95% soit inférieure à 2? Donner la forme de cet intervalle au niveau 95% pour $\sigma=3$, n=25 et $\bar{y}_{25}=\bar{Y}_{25}(\omega)=20$. (Indication : $\Phi^{-1}(0.975)\approx 2$.)
 - (c) Soit $\alpha \in [0, 1]$. Proposer un test de niveau α pour l'hypothèse $H_0: m = m_0$ contre $H_1: m \neq m_0$. Pour $\sigma = 3$, n = 25, $\bar{y}_{25} = \bar{Y}_{25}(\omega) = 20$ et $m_0 = 18.9$, quelle est la p-valeur de ce test? Peut-on accepter l'hypothèse H_0 aux niveaux 1%, 5% et 10%? (Indication: $\Phi\left(\frac{5.5}{3}\right) \simeq \Phi(1.83) \simeq 0.97$.)
- 2. On ne suppose plus que σ est connu. On pose $\hat{\sigma}_n = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (Y_i \bar{Y}_n)^2}$.
 - (a) Écrire le modèle de régression associé aux hypothèses énoncées plus haut et donner l'estimateur des moindres carrés.
 - (b) Énoncer le théorème de Cochran dans ce cas.
 - (c) Montrer que $\hat{\sigma}_n^2$ est un estimateur sans biais et consistant de σ^2 .
 - (d) Donner la loi exacte de $\sqrt{n} \frac{\bar{Y}_n m}{\hat{\sigma}_n}$.

- (e) Tester l'hypothèse $H_0: \sigma^2 = 3$ contre $H_1: \sigma^2 \neq 3$ au niveau α .
- (f) Déterminer un intervalle de confiance de niveau 1α pour m. En déduire un test pour l'hypothèse $H_0: m = m_0$ contre $H_1: m \neq m_0$ au niveau α .
- (g) Tester maintenant $H_0: m \geq m_0$ contre $H_1: m < m_0$ au niveau α . Calculer la p-valeur lorsque $m_0=12.5, n=25, \bar{y}_{25}=\bar{Y}_{25}(\omega)=12$ et $\hat{\sigma}_n^2(\omega)=1.69$? Peut-on accepter l'hypothèse H_0 au niveau 5%? (Indication : $F_{\mathcal{T}(24)}(-1.92)\simeq 0.03$.)

Exercice 3: On considère le modèle suivant

$$Y_i = a + bt_i + \varepsilon_i, \quad 1 \le i \le n,$$

où les variables aléatoires ε_i sont i.i.d. $\mathcal{N}(0, \sigma^2)$, les réels $(t_i)_{1 \le i \le n}$ sont connus et a, b, σ^2 sont trois paramètres réels inconnus. On suppose que $\sum_{i=1}^n t_i = 0$ et on note

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i, \quad v_t = \frac{1}{n} \sum_{i=1}^{n} t_i^2 > 0, \quad v_Y = \frac{1}{n} \sum_{i=1}^{n} Y_i^2 - \bar{Y}^2 \quad \text{et} \quad \rho = \frac{1}{n} \sum_{i=1}^{n} Y_i t_i.$$

- 1. Préciser les conditions d'identifiabilité du modèle.
- 2. Calculer les estimateurs des moindres carrés \hat{a} , \hat{b} et $\hat{\sigma}^2$ de a, b et σ^2 en fonction de \bar{Y} , v_t , v_Y et ρ . Quelle est leur loi jointe?
- 3. Soit $\alpha \in [0,1]$. Donner un intervalle de confiance de niveau $1-\alpha$ pour chacun des paramètres a et b. En déduire un rectangle de confiance de niveau 95% pour le paramètre (a,b).
- 4. Montrer que

$$\frac{1}{2\hat{\sigma}^2} \left(\begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix} \right)^T \mathbf{X}^T \mathbf{X} \left(\begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix} \right) \sim \mathcal{F}_{2,n-2}.$$

- 5. En déduire une ellipse de confiance de niveau 95% pour le paramètre (a, b).
- 6. Donner un intervalle de confiance pour 5a 8b, de niveau 95%, lorsque n = 18.
- 7. Tester l'hypothèse H_0 : "a=b" contre H_1 : " $a\neq b$ " au niveau 1% lorsque n=22.