Polytech L3

Feuille de TD 2 : Méthodes itératives

Ces exercices sont tirés du cours de P. Tarrago.

Exercice 1 : Calculer le rayon spectral de la matrice d'itération *B* pour les méthodes de Jacobi et Gauss-Seidel pour

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & 2 \end{pmatrix}.$$

Quelles méthodes convergent?

Exercice 2 : Soit A une matrice diagonalisable. On veut trouver une norme opérateur $\|\cdot\|$ telle que $\rho(A) = \|A\|$.

- 1. Soit $M \in GL_n(\mathbb{C})$ telle que $MAM^{-1} = D$, avec D diagonale. Montrer que $\|.\|_M : x \mapsto \|Mx\|_2$ définit une norme sur \mathbb{C}^n .
- 2. En utilisant la base $(M^{-1}e_i)_{1 \le i \le n}$, avec $(e_i)_{1 \le i \le n}$ base canonique de \mathbb{C}^n , en déduire que

$$||A||_M = ||D||_2,$$

où $||A||_M$ est la norme opérateur de A associée à $||\cdot||_M$ sur \mathbb{C}^n .

3. En déduire que $\rho(A) = ||A||_M$.

Exercice 3 : L'objectif de cet exercice est de montrer que la méthode de Gauss-Seidel est convergente si A est symétrique définie positive (ce qui signifie que $\langle x, Ax \rangle > 0$ pour tout $x \in \mathbb{R}^n$ non nul). On rappellera également que comme A est symétrique, il existe une matrice de passage P unitaire (i.e $P^{-1} = P^T$) et une matrice diagonale \tilde{D} dont les éléments diagonaux sont strictement positifs telles que $A = P^T \tilde{D} P$.

- 1. Montrer qu'il existe une matrice définie positive C telle que $A=C^2$.
- 2. Montrer que $x \mapsto \sqrt{\langle x, Ax \rangle}$ définit une norme $\| \cdot \|_A$ sur \mathbb{R}^n .
- 3. Donner en fonction de *A* l'expression de la matrice *M* pour la méthode de Gauss-Seidel.
- 4. Prouver que pour tout $y \in \mathbb{C}^n$ non nul,

$$\langle (M+M^t-A)y,y\rangle > 0.$$

5. En déduire en posant $y = M^{-1}Ax$, que pour tout $x \in \mathbb{C}^n$ non nul,

$$\langle (Id - M^{-1}A)x, A(Id - M^{-1}A)x \rangle < \langle x, Ax \rangle.$$

6. En déduire que $\|B\|_A < 1$, où B est la matrice d'itération de la méthode de Gauss-Seidel, et conclure.