Sorbonne Université Année 2025/2026

L3 Deuxième semestre

Feuille de TD 2 : Estimation

Exercice 1 – Estimation de la moyenne et de la variance.

Soit X une variable aléatoire de moyenne μ et de variance σ^2 inconnues. Soit X_1, \ldots, X_n des variables aléatoires indépendantes et de même loi que X.

- 1. Rappeler l'estimateur de la moyenne. Montrer qu'il est sans biais, fortement consistant et donner son erreur quadratique moyenne ainsi que sa normalité asymptotique.
- 2. On souhaite maintenant estimer σ^2 . On propose l'estimateur suivant :

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}_n^2.$$

Expliquer ce choix.

3. Montrer que

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - (\overline{X}_n - \mu)^2.$$

- 4. Soit $\tau^4 = \mathbb{E}\left[(X \mu)^4 \right]$. A l'aide du Théorème de Slutsky, donner la normalité asymptotique de $\hat{\sigma}_n^2$.
- 5. Calculer $\mathbb{E}\left[\hat{\sigma}_{n}^{2}\right]$. L'estimateur $\hat{\sigma}_{n}$ est-il sans biais?
- 6. En déduire un estimateur sans biais de σ^2 et donner sa normalité asymptotique.

Exercice 2 – Estimation de la covariance.

Soit (X, Y) un couple de variables aléatoires réelles d'espérances respectives μ_X, μ_Y et de variances respectives σ_X^2, σ_Y^2 . On s'intéresse ici à l'estimation de la covariance C de X, Y, définie par

$$C = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Soient $(X_1, Y_1), \ldots, (X_n, Y_n)$ des couples de variables aléatoires indépendants et de même loi que (X, Y). On s'intéresse à l'estimateur C_n défini par

$$C_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n) (Y_i - \overline{Y}_n).$$

- 1. Justifier la proposition de cet estimateur.
- 2. Montrer que

$$\sum_{j=1}^{n} (X_j - \overline{X}_n) (Y_j - \overline{Y}_n) = \sum_{j=1}^{n} (X_j - \mu_X) (Y_j - \mu_Y) - n (\overline{X}_n - \mu_X) (\overline{Y}_n - \mu_Y).$$

3. Montrer que

$$n^{2}\left(\overline{X}_{n}-\mu_{X}\right)\left(\overline{Y}_{n}-\mu_{Y}\right)=\sum_{j=1}^{n}\left(X_{j}-\mu_{X}\right)\left(Y_{j}-\mu_{Y}\right)+\sum_{i\neq j}\left(X_{i}-\mu_{X}\right)\left(Y_{j}-\mu_{Y}\right).$$

- 4. Calculer $\mathbb{E}[C_n]$. Que pouvez vous en déduire?
- 5. Proposer un estimateur sans biais de *C*.
- 6. En posant $Z_j = (X_j \mu_X) (Y_j \mu_Y)$, montrer que C_n converge en probabilité vers C.
- 7. Montrer, soit à l'aide des inégalités de Markov et de Cauchy-Schwarz, soit à l'aide du théorème de Slutsky, que

$$\sqrt{n}\left(\overline{X}_n-\mu_X\right)\left(\overline{Y}_n-\mu_Y\right)\xrightarrow[n\to+\infty]{\mathbb{P}}0.$$

8. Soit $\tau^4 = \mathbb{E}\left[(X - \mu_X)^2 (Y - \mu_Y)^2 \right] < +\infty$. Donner la normalité asymptotique de C_n , et en déduire celle de l'estimateur sans biais.

Exercice 3 – Méthode des moments.

Soit $\theta \in \Theta$ où Θ est un ouvert de \mathbb{R} , et $\varphi : \Theta \longrightarrow \varphi(\Theta)$ un C^1 -difféomorphisme. Soit $k \in \mathbb{N}^*$ tel que

$$\mathbb{E}\left[X^k\right] = \varphi(\theta).$$

De plus, on suppose que *X* admet un moment d'ordre 2*k*.

- 1. Soit $X_1, ..., X_n$ des variables aléatoires indépendantes et identiquement distribuées de même loi que X. Proposer un estimateur de $\varphi(\theta)$.
- 2. Est-il consistant? Asymptotiquement normal?
- 3. En déduire un estimateur de θ .
- 4. Est-il consistant?
- 5. On suppose que $\varphi'(\theta) \neq 0$. En déduire la normalité asymptotique de l'estimateur de θ .

Exercice 4 – loi géométrique.

Soit X une variable aléatoire suivant une loi géométrique de paramètre p, i.e pour tout entier $k \ge 1$, $\mathbb{P}[X = k] = (1 - p)^{k-1}p$.

- 1. Rappeler l'espérance et la variance de *X*.
- 2. Soit $X_1, ..., X_n$ des variables aléatoires indépendantes et de même loi que X. Par la méthode des moments, donner un estimateur \hat{p}_n de p.
- 3. Est-il consistant? Fortement consistant? Asymptotiquement normal?
- 4. Donner l'estimateur \hat{p}_n^{MV} du maximum de vraisemblance de p. Que pouvez vous en conclure?

Exercice 5 – loi exponentielle.

Soit X une variable aléatoire suivant une loi exponentielle de paramètre $\theta > 0$. On rappelle que la densité de X est définie pour tout $x \in \mathbb{R}$ par

$$f(x) = \theta \exp(-x\theta) \mathbf{1}_{[0,+\infty[}(x).$$

- 1. Calculer $\mathbb{E}[X]$ et $\mathbb{V}[X]$.
- 2. Soit $X_1, ..., X_n$ des variables aléatoires indépendantes et de même loi que X. A l'aide de la méthode des moments, proposer un estimateur $\hat{\theta}_n$ de θ .
- 3. Est-il consistant? Fortement consistant?
- 4. Donner sa normalité asymptotique.
- 5. Donner l'estimateur (si il existe) du maximum de vraisemblance $\hat{\theta}_n^{MV}$ de $\theta.$
- 6. Que pouvez vous en conclure?

Exercice 6 – loi de Rayleigh.

Soit θ un entier positif. On considère une variable aléatoire X suivant une loi de Rayleigh de paramètre θ , i.e de f_{θ} définie pour tout $x \in \mathbb{R}$ par $f_{\theta}(x) = \lambda x \exp\left(-\frac{x^2}{\theta}\right) \mathbf{1}_{\mathbb{R}_+}(x)$.

- 1. Calculer λ .
- 2. Calculer l'espérance et la variance de *X*.
- 3. Soit X_1, \ldots, X_n des variables aléatoires indépendantes et de même loi que X. En déduire un estimateur $\hat{\theta}_n$ de θ .
- 4. Est-il consistant? Fortement consistant? Asymptotiquement normal?
- 5. Donner l'estimateur du maximum de vraisemblance $\hat{\theta}_n^{MV}$ de θ .
- 6. Donner la normalité asymptotique de cet estimateur.
- 7. Que pouvez-vous en conclure?

Exercice 7 - Loi de Poisson.

On considère une variable aléatoire X suivant une loi de Poisson de paramètre θ .

- 1. Soit $(X_1, ..., X_n)$ i.i.d de même loi que X. A l'aide de la méthode des moments, proposer un estimateur de θ .
- 2. Est-il consistant? Fortement consistant? Asymptotiquement normal?
- 3. Donner l'estimateur du maximum de vraisemblance.
- 4. Est-il consistant? Fortement consistant? Asymptotiquement normal?

Exercice 8 – Loi exponentielle translatée.

Soit Y une variable aléatoire suivant une loi exponentielle de paramètre 1, i.e de densité f définie pour tout $x \in \mathbb{R}$ par

$$f(x) = \exp(-x) \mathbf{1}_{\mathbb{R}_+}(x)$$

Soit θ , on considère la variable aléatoire $X = Y + \theta$ de densité

$$f_{\theta}(x) = \exp\left(-(x-\theta)\right) \mathbf{1}_{[\theta,+\infty[}(x).$$

- 1. Calculer $\mathbb{E}[Y]$ et en déduire $\mathbb{E}[X]$.
- 2. Soit $X_1, ..., X_n$ des variables aléatoires indépendantes et de même loi que X. En déduire un estimateur $\hat{\theta}_n$ de θ . Cet estimateur est-il consistant? Fortement consistant? Sans biais?
- 3. Calculer $\mathbb{V}[Y]$ et en déduire $\mathbb{V}[X]$.
- 4. Donner la normalité asymptotique de $\hat{\theta}_n$.
- 5. Donner l'erreur quadratique moyenne de $\hat{\theta}_n$.
- 6. Donner l'estimateur $\hat{\theta}_n^{MV}$ du maximum de vraisemblance.
- 7. Soit $Z_n = \min_{i=1,\dots,n} X_i$. Rappeler la loi de $n(Z_n \theta)$.
- 8. Quel estimateur choisiriez vous?
- 9. Calculer sonr erreur quadratique moyenne.

Exercice 9 – Loi uniforme dilatée.

Soit $\theta > 0$. On considère une variable aléatoire X suivant une loi uniforme sur $[0, \theta]$. Soit $x_1, ..., x_n$ des réalisation des variables aléatoires indépendantes $X_1, ..., X_n$ et de même loi que X.

- 1. Par la méthode des moments, proposer un estimateur convergent de θ et donner sa convergence.
- 2. Cet estimateur est-il sans biais?

- 3. Donner son erreur quadratique moyenne.
- 4. Donner sa normalité asymptotique.
- 5. Donner l'estimateur du maximum de vraisemblance de θ .
- 6. Calculer la fonction de répartition de *X*.
- 7. On considère maintenant $X_{(n)} = \max_{i=1,\dots,n} X_i$. Donner sa fonction de répartition.
- 8. Montrer que $X_{(n)}$ converge en probabilité vers θ .
- 9. A l'aide du lemme de Borel-Cantelli, en déduire la forte consistance de $X_{(n)}$.
- 10. Donner la fonction de répartition d'une loi exponentielle de paramètre θ^{-1} .
- 11. Montrer que $n\left(\theta X_{(n)}\right)$ converge en loi vers une loi exponentielle de paramètre θ^{-1} .
- 12. Quel estimateur de θ choisiriez vous?

Exercice 10 - Loi normale.

Soit X une variable aléatoire suivant une loi normale de moyenne μ et de variance σ^2 . Soit x_1, \ldots, x_n des réalisations des variables aléatoires indépendantes X_1, \ldots, X_n de même loi que X.

- 1. Ecrire la vraisemblance
- 2. En déduire les estimateur du maximums de vraisemblance de μ et σ^2 .
- 3. Commenter.