Sorbonne Université M2 Statistique

Feuille de TD 2

Exercice 1 : (loi de Poisson) Soit X_1, \ldots, X_n des variables aléatoires i.i.d suivant une loi de Poisson de paramètre λ et

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 et $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$

- 1. Montrer que \overline{X}_n est un estimateur sans biais et asymptotiquement normal de λ .
- 2. Montrer que S_n^2 est un estimateur sans biais de λ et montrer sa normalité asymptotique. On rappelle que $\mathbb{E}\left[\left(X_1-\lambda\right)^4\right]=\lambda+3\lambda^2$.
- 3. Quel estimateur privilégier?
- 4. Montrer que

(a)
$$\sqrt{n} \frac{\overline{X}_n - \lambda}{\sqrt{\overline{X}_n}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0,1)$$

(b)
$$\sqrt{n} \frac{\overline{X}_n - \lambda}{S_n} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0,1)$$

(c)
$$\sqrt{n} \left(g\left(\overline{X}_n \right) - g(\lambda) \right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0,1)$$
 pour un bon choix de g .

5. Déterminer les intervalles de confiance correspondant, lequel est le meilleur?

Exercice 2 : (loi uniforme) Soit X_1, \ldots, X_n un échantillon de loi uniforme sur $[0, \theta]$.

- 1. Le modèle est-il régulier?
- 2. Par la méthode des moments, proposer un estimateur de θ . Montrer sa consistance et sa normalité asymptotique. En déduire un intervalle de confiance asymptotique de niveau $1-\alpha$.
- 3. Soit $\theta_0 > 0$, proposer un test de niveau asymptotique α pour tester

$$H0: \theta = \theta_0$$
 contre $H_1: \theta \neq \theta_0$.

- 4. Calculer l'estimateur du maximum de vraisemblance et calculer son risque quadratique
- 5. Calculer la loi limite de $n (\theta \theta_n^{MV})$.
- 6. Déterminer $c_{\alpha,n}$ tel que $\left[X_{(n)},c_{\alpha,n}X_{(n)}\right]$ soit un intervalle de confiance de niveau $1-\alpha$.
- 7. Calculer la médiane de X_1 et en déduire un nouvel estimateur de θ . Donner sa normalité asymptotique ainsi qu'un nouvel intervalle de confiance asymptotique.
- 8. Quel intervalle choisiriez vous?

9. Soit $\lambda_0 > 0$. En déduire un test de niveau α pour tester

$$H0: "\lambda = \lambda_0"$$
 contre $H1: "\lambda \neq \lambda_0"$.

Exercice 3 : (Loi de Pareto) Soit X_1, \ldots, X_n des variables aléatoires i.i.d de densité de Pareto

$$f_{\theta}(x) = \frac{\theta}{x^{\theta+1}} \mathbf{1}_{x \ge 1}.$$

avec $\theta > 0$.

- 1. On suppose $\theta > 1$, estimer θ par la méthode des moments. A-t-on consistance? normalité asymptotique?
- 2. Que se passe-t-il si $\theta \in (0,1)$?
- 3. Calculer la médiane de X et en déduire un nouvel estimateur de θ , pour tout $\theta > 0$. Donner sa normalité asymptotique.
- 4. Donner l'estimateur du maximum de vraisemblance pour $\theta > 0$. Est-il asymptotiquement normal?
- 5. Le modèle est-il régulier? L'estimateur du maximum de vraisemblance est-il asymptotiquement efficace?

Exercice 4 : lois translatées

1. Soit $\theta \in \mathbb{R}$ et une variable aléatoire X de densité $f_{\theta}(x) = f(x - \theta)$ par rapport à la mesure de Lebesgue, pour une certaine densité f sur \mathbb{R} connue et un paramètre inconnu $\theta \in \mathbb{R}$. Montrer que si f est de classe C^1 et si

$$I = \int_{\mathbb{R}} \frac{\left(f'(x)\right)^2}{f(x)} \mathbf{1}_{f(x)>0} dx < +\infty,$$

alors le modèle $(f_{\theta})_{\theta \in \mathbb{R}}$ est régulier d'information de Fisher $I(\theta) = I$.

- 2. Pour chacun des modèles suivants, dire si le modèle est régulier et si oui calculer l'information de Fisher :
 - (a) $f_{\theta}(x) = \exp(-(x-\theta)^2/2)/(2\pi)^{1/2}, \theta \in \mathbb{R};$
 - (b) $f_{\theta}(x) = \theta^{-1} \mathbf{1}_{[0,\theta]}(x), \theta > 0;$
 - (c) $f_{\theta}(x) = c_1(1-(x-\theta)^2)\mathbf{1}_{[\theta-1,\theta+1]}(x)$, $\theta \in \mathbb{R}$, pour une constante $c_1 > 0$ à déterminer;
 - (d) $f_{\theta}(x) = c_2(1-(x-\theta)^2)^2\mathbf{1}_{[\theta-1,\theta+1]}(x)$, $\theta \in \mathbb{R}$, pour une constante $c_2 > 0$ à déterminer.

Exercice 5 : (Loi exponentielle translatée) On observe un échantillon X_1, \ldots, X_n dont la loi admet la densité

$$f_{\theta}(x) = \exp(-(x-\theta))\mathbf{1}_{[\theta,+\infty[}(x),$$

où θ est un paramètre réel inconnu.

- 1. Rappeler la loi de $n(X_{(1)} \theta)$. En déduire un intervalle de confiance pour θ de niveau 1α .
- 2. Soit $\alpha \in]0,1[$. On souhaite tester au niveau α

$$H_0: \theta \geq 0$$
 contre $H_1: \theta < 0$.

- (a) Construire un test à partir de l'intervalle de confiance de la question 2, calculer sa puissance et donner son allure (pour n et α fixés). Quelle est sa taille α^* ?
- (b) Proposer un autre test qui soit, lui, de taille α .
- (c) Calculer la fonction puissance du test. La représenter en fonction de θ pour n et α fixés.
- (d) Comment varie la puissance en fonction de α ? en fonction de n?

Exercice 6 : Reparamétrage L'objectif est de démontrer le théorème suivant :

Theorem 0.1. Soit $(g_{\theta}, \mu)_{\theta \in \Theta}$ un modèle régulier d'information de Fisher $I(\theta)$. Soit $\varphi : \Theta \longrightarrow \varphi(\Theta)$ un C^1 -difféomorphisme tel que $\varphi'(\theta) \neq 0$ pour tout $\theta \in \Theta$. Alors le modèle $(g_{\varphi^{-1}(\eta)}, \mu)_{\eta \in \varphi(\Theta)}$ est aussi régulier d'information de Fisher

$$J(\eta) = \left(\left(\varphi^{-1}\right)'(\eta)\right)^2 I\left(\varphi^{-1}(\eta)\right) = \frac{1}{\left(\varphi'(\theta)\right)^2} I(\theta).$$

On considère un modèle régulier $(g_{\theta}, \theta \in \Theta, \mu)$ d'information de Fisher $I(\theta) > 0$. De plus, pour tout $x \in \mathbb{R}$, la fonction $\theta \longmapsto g_{\theta}(x)$ est de classe C^1 . Soit $\varphi : \Theta \longrightarrow \varphi(\Theta)$ un C^1 -difféomorphisme.

- 1. Montrer que pour tout $x \in \mathbb{R}$, la fonction $\eta : \mapsto h_{\eta}(x) = g_{\varphi^{-1}(\eta)}$ est de classe C^1 et calculer sa dérivée.
- 2. En déduire l'information de Fisher du modèle $(h_{\eta}, \mu)_{\eta \in \varphi(\Theta)}$.

Exercice 7 : Soit $\theta > 0$ un paramètre inconnu. On considère la densité f_{θ} définie pour tout $x \in \mathbb{R}$ par

$$f_{\theta}(x) = \frac{\theta}{x^2} \mathbf{1}_{x \ge \theta}.$$

Dans ce qui suit, on considère des variables aléatoires X_1, \ldots, X_n indépendantes et de densité f_θ .

- 1. Calculer la fonction de répartition de X_1 .
- 2. Calculer la médiane de X_1 et en déduire un estimateur de θ . Est-il consistant? Asymptotiquement normal?
- 3. Par la méthode des moments, proposer un estimateur. Est-il consistant? Asymptotiquement normal?
- 4. Déterminer l'estimateur du maximum de vraisemblance $\hat{\theta}_n$. Déterminer la loi limie de $n(\hat{\theta}_n \theta)$.
- 5. Le modèle $(f_{\theta})_{\theta>0}$ est-il régulier?

6. Pour tout $\epsilon > 0$, calculer

$$\mathbb{P}\left[\hat{\theta}_n \geq (1+\epsilon)\theta\right].$$

En déduire un intervalle de confiance non asymptotique de niveau $1 - \alpha$.

Exercice 8 : Estimation de deux paramètres Soit $Y \sim \mathcal{E}(\lambda)$ avec $\lambda > 0$ inconnu. Soit $X = Y + \theta$ avec $\theta > 0$ inconnu. On admettra que X a pour densité $f_{\theta,\lambda}$ définie pour tout x par

$$f_{\theta,\lambda}(x) = \lambda \exp(-\lambda(x-\theta)) \mathbf{1}_{[\theta,+\infty[}(x).$$

Soient X_1, \ldots, X_n des variables aléatoires i.i.d de même loi que X.

- 1. Calculer $\mathbb{E}[X]$ et $\mathbb{V}[X]$.
- 2. On suppose θ "fixé", le modèle (f_{λ}) avec $f_{\lambda} = f_{\theta,\lambda}$ est il régulier?
- 3. On suppose λ "fixé", le modèle (f_{θ}) avec $f_{\theta} = f_{\theta,\lambda}$ est-il régulier?
- 4. Déterminer l'estimateur du maximum de vraisemblance de θ .
- 5. Calculer la fonction de répartition de $X_{(1)}$.
- 6. En déduire l'erreur quadratique moyenne de $X_{(1)}$.
- 7. Déduire de la question 5

$$\sqrt{n}\left(X_{(1)}-\theta\right)\xrightarrow[n\to+\infty]{\mathbb{P}}0.$$

Que pouvez-vous en déduire?

- 8. En déduire un estimateur de λ .
- Montrer que l'estimateur de λ est consistant. Pour s'aider, on admettra que si (A_n) et (B_n) sont deux suites de variables aléatoires convergeant en probabilités vers a et b, et g : I × J → ℝ est une fonction continue en (a, b), alors

$$g(A_n, B_n) \xrightarrow[n \to +\infty]{\mathbb{P}} g(a, b).$$

avec I, J des intervalles ouvert de \mathbb{R} .

10. Montrer que

$$\sqrt{n}\left(\overline{X}_n - \hat{\theta}_n - \frac{1}{\lambda}\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{\lambda^2}\right).$$

- 11. En déduire la normalité asymptotique de l'estimateur de λ .
- 12. Soit $\alpha \in (0,1)$, en déduire un intervalle de confiance asymptotique de λ .
- 13. Montrer que

$$n\left(X_{(1)}-\theta\right)\sim\mathcal{E}(\lambda).$$

14. Pour tout $\alpha \in (0,1)$, donner le quantile $q_{\lambda,1-\alpha}$ d'ordre $1-\alpha$ de la loi exponentielle de paramètre λ .

15. Donner la convergence de

$$n\left(X_{(1)}-\theta\right)-\left(q_{\hat{\lambda}_n,1-\alpha}-q_{\lambda,1-\alpha}\right).$$

avec
$$q_{\hat{\lambda}_n} = \frac{-\ln(\alpha)}{\hat{\lambda}_n}$$
.

16. Déterminer un intervalle de confiance asymptotique de niveau $1-\alpha$ pour θ .