Sorbonne Université Année 2025/2026

L3 Deuxième semestre

Feuille de TD 1 : Convergence de suites de variables aléatoires

Exercice 1.

- 1. Rappeler les définitions de la convergence en loi, en probabilité, presque sûre et en moyenne quadratique .
- 2. Montrer que la convergence en moyenne quadratique implique la convergence en probabilité.
- 3. Soit a une constante et (X_n) une suite de variables aléatoires. Montrer que si (X_n) converge en loi vers a, alors (X_n) converge en probabilité vers a.
- 4. Soit (X_n) une suite de variables aléatoires convergeant en loi vers une constante a et soit $h: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue. Montrer que $h(X_n)$ converge en probabilité vers h(a).
- 5. Etudier la convergence de la suite (X_n) dans chacun des cas suivants :
 - $X_n = 1/n$.
 - $X_n = (-1)^n$.
 - $X_n = \mathbf{1}_{A_n}$ où A_n est une suite d'évènements et $\mathbb{P}[A_n]$ converge vers 0.
 - $X_n = Z_n \mathbf{1}_{B_n}$ où Z_n converge en loi vers une variable aléatoire Z et $\mathbb{P}[B_n]$ converge vers 1.

Exercice 2.

Soient X_1, X_2, \dots, X_n des variables aléatoires indépendantes et identiquement distribuées, à valeurs dans un ensemble A. Soit $D \subset A$ tel que $p = \mathbb{P}[X_1 \in D] \neq 0$.

Pour tout $n \ge 1$, on pose $S_n = \sum_{j=1}^n \mathbf{1}_{\{X_j \in D\}}$.

- 1. Calculer $\mathbb{E}[S_n]$ et $\mathbb{V}[S_n]$.
- 2. Montrer que la suite $\frac{S_n}{n}$ converge presque sûrement vers p.
- 3. Calculer l'erreur quadratique moyenne $\mathbb{E}\left[\left(\frac{S_n}{n}-p\right)^2\right]$. En déduire une majoration uniforme en p de l'erreur quadratique moyenne.

4. Démontrer que pour tout $p \in]0,1[$ et pour tout $\varepsilon > 0$,

$$\mathbb{P}\left[\left|\frac{S_n}{n} - p\right| \ge \epsilon\right] \le \frac{1}{4n\epsilon^2}.$$

5. Enoncer le théorème de limite centrale que satisfait la variable $\frac{S_n}{n}$.

Exercice 3.

Soient (X_n) et (Y_n) des suites de variables aléatoires, et X, Y des variables aléatoires. Montrer que :

- 1. Si X_n et Y_n convergent en probabilité vers X et Y, alors $X_n + Y_n$ converge en probabilité vers X + Y.
- 2. Si X_n et Y_n convergent presque sûrement vers X et Y, alors $X_n + Y_n$ converge presque sûrement vers X + Y.
- 3. Si X_n et Y_n convergent en moyenne quadratique vers X et Y, alors $X_n + Y_n$ converge en moyenne quadratique vers X + Y.

Exercice 4.

Soit (X_n) une suite de variables aléatoires centrées, de même variance σ^2 et satisfaisant pour tout entiers $i \neq j$

$$Cov(X_i, X_i) = \sigma^2 \alpha^{|j-i|}$$

avec $\alpha \in (0,1)$. Pour tout $n \ge 1$, on pose $S_n = \sum_{i=1}^n X_i$.

- 1. Calculer $\mathbb{E}[S_n]$.
- 2. (*) Montrer que

$$\mathbb{V}\left[S_n\right] = n\sigma^2 + \frac{2\alpha\sigma^2}{1-\alpha}\left((n-1) - \alpha\frac{1-\alpha^{n-1}}{1-\alpha}\right).$$

On rappellera que

$$\mathbb{V}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbb{V}\left[X_{i}\right] + \sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

3. En déduire la convergence en moyenne quadratique de S_n/n .

Exercice 5.

On considère une suite de variables aléatoires (X_n) . Dans chacun des cas suivants, donner la normalité asymptotique de $g(X_n)$.

1.
$$g: x \longmapsto \sqrt{x}, \theta > 0$$
 et

$$\sqrt{n}\left(X_n-\theta^2\right)\xrightarrow[n\to+\infty]{\mathcal{L}}\mathcal{N}\left(0,1\right).$$

2.
$$g: x \longmapsto x^{-1}, \theta \neq 0$$
 et

$$\sqrt{n}\left(X_n-\frac{1}{\theta}\right)\xrightarrow[n\to+\infty]{\mathcal{L}}\mathcal{N}\left(0,\frac{1}{\theta^2}\right).$$

3.
$$g: x \longleftarrow e^x$$
, $\theta > 0$ et

$$\sqrt{n}\left(X_n - \ln(\theta)\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, (\ln \theta)^2\right)$$

Exercice 6.

Soit X une variable aléatoire suivant une loi uniforme sur [0,1].

- 1. Donner la loi de $Z = -\log(X)$.
- 2. Soit Z_1 , ..., Z_n des variables aléatoires indépendantes et identiquement distribuées de même loi que Z. Donner la normalité asymptotique de \overline{Z}_n .
- 3. En déduire la normalité asymptotique de

$$Y_n = \frac{1}{\left(\prod_{i=1}^n X_i\right)^{1/n}}.$$

Exercice 7 – Loi exponentielle translatée.

Soit Y une variable aléatoire suivant une loi exponentielle de paramètre 1, i.e de densité f définie pour tout $x \in \mathbb{R}$ par

$$f(x) = \exp(-x) \mathbf{1}_{\mathbb{R}^*_{\perp}}(x)$$

Soit θ , on considère la variable aléatoire $X = Y + \theta$ de densité

$$f_{\theta}(x) = \exp(-(x-\theta)) \mathbf{1}_{[\theta_r + \infty[}(x).$$

- 1. Donner les fonctions de répartitions des variables *X* et *Y*.
- 2. Soit $X_1, ..., X_n$ des variables aléatoires indépendantes et de même loi que X. On considère la variable aléatoire $Z_n = \min_{i=1,...,n} X_i$. Donner la fonction de répartition de Z_n .
- 3. En déduire que Z_n converge en probabilité vers θ .
- 4. Montrer que la variable $n(Z_n \theta)$ suit une loi exponentielle de paramètre 1.

Exercice 8 – Inégalité de Hölder.

L'objectif de cette exercice est de démontrer l'inégalité de Hölder "généralisée" suivante. Soient p,q,r>0 tels que $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$, et X,Y deux variables aléatoires admettant respectivement un

moment d'ordre p et q. Alors

$$\left(\mathbb{E}\left[|XY|^r\right]\right)^{\frac{1}{r}} \leq \left(\mathbb{E}\left[|X|^p\right]\right)^{\frac{1}{p}} \left(\mathbb{E}\left[|Y|^q\right]\right)^{\frac{1}{q}}.$$

1. Montrer que pour tout $a, b \ge 0$

$$\frac{1}{r}(ab)^r \le \frac{1}{p}a^p + \frac{1}{q}b^q.$$

- 2. En déduire l'inégalité de Hölder.
- 3. Soit $(X_n)(Y_n)$ deux suites de variables aléatoires convergeant vers 0 respectivement à l'ordre p > 2 et $\frac{2p}{p-2}$, i.e

$$\mathbb{E}\left[\left|X_{n}\right|^{p}\right]\xrightarrow[n\to+\infty]{}0\qquad\text{et}\qquad\mathbb{E}\left[\left|Y_{n}\right|^{\frac{2p}{p-2}}\right]\xrightarrow[n\to+\infty]{}0.$$

Montrer que X_nY_n converge en moyenne quadratique vers 0.